Confidence Intervals for Means Known Variance

Gene Quinn

Interval Estimation

The maximum likelihood and method of moments estimates we have developed each consist of a single value

Interval Estimation

The maximum likelihood and method of moments estimates we have developed each consist of a single value

For this reason, they are called point estimates.
An obvious drawback of stating a single value is that it gives no information about the precision of the estimate.

Interval Estimation

The maximum likelihood and method of moments estimates we have developed each consist of a single value

For this reason, they are called point estimates.
An obvious drawback of stating a single value is that it gives no information about the precision of the estimate.

To address this shortcoming, a different type of estimate called an interval estimate can be used.

Unknown Variance

An interval estimate consists of:

- An interval (L, U), usually centered at a sample mean

Unknown Variance

An interval estimate consists of:

- An interval (L, U), usually centered at a sample mean
- A level of confidence that the interval contains the (unknown) parameter

Unknown Variance

An interval estimate consists of:

- An interval (L, U), usually centered at a sample mean
- A level of confidence that the interval contains the (unknown) parameter

The level of confidence is usually stated as a percentage, say 95%.

Unknown Variance

An interval estimate consists of:

- An interval (L, U), usually centered at a sample mean
- A level of confidence that the interval contains the (unknown) parameter

The level of confidence is usually stated as a percentage, say 95%.

The interpretation of this number is that, if a large number of samples are taken and a new confidence interval (L, U) is calculated for each of them, 95% of the time the interval will contain the unknown paramter value.

Computing the Interval

Suppose a random variable X has a normal distribution with mean $\mu=120$ and variance $\sigma^{2}=16$

Computing the Interval

Suppose a random variable X has a normal distribution with mean $\mu=120$ and variance $\sigma^{2}=16$

We denote this situation with the notation $X \sim(120,16)$

Computing the Interval

Suppose a random variable X has a normal distribution with mean $\mu=120$ and variance $\sigma^{2}=16$

We denote this situation with the notation $X \sim(120,16)$
We are interested in finding an interval centered at $\mu=120$ that has an area of 0.95 .

That is, an interval $[L, U]$ such that

$$
\int_{L}^{U} \frac{1}{\sqrt{2 \pi} \sigma} \exp \left(-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}\right) d x=0.95
$$

Computing the Interval

Suppose a random variable X has a normal distribution with mean $\mu=120$ and variance $\sigma^{2}=16$

We denote this situation with the notation $X \sim(120,16)$
We are interested in finding an interval centered at $\mu=120$ that has an area of 0.95 .

That is, an interval $[L, U]$ such that

$$
\int_{L}^{U} \frac{1}{\sqrt{2 \pi} \sigma} \exp \left(-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}\right) d x=0.95
$$

Computing the Interval

It's impossible to find an antiderivative of

$$
f(x)=\frac{1}{\sqrt{2 \pi} \sigma} \exp \left(-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}\right)
$$

so we can't evaluate the integral directly.

Computing the Interval

It's impossible to find an antiderivative of

$$
f(x)=\frac{1}{\sqrt{2 \pi} \sigma} \exp \left(-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}\right)
$$

so we can't evaluate the integral directly.
However, spreadsheets and statistical packages provide functions to evaluate the integral numerically.

Computing the Interval

The spreadsheet function

$$
=\operatorname{NORMINV}(p, \mu, \sigma)
$$

returns the value x_{p} on the x-axis with the property that

$$
\int_{-\infty}^{x_{p}} \frac{1}{\sqrt{2 \pi} \sigma} \exp \left(-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}\right) d x=p
$$

Computing the Interval

If we are interested in an interval centered at μ that contains 95% of the area under the bell curve associated with the $N\left(\mu, \sigma^{2}\right)$ distribution, the limits can be obtained as:

LOWER LIMIT: $\quad=\operatorname{NORMINV}(0.025, \mu, \sigma)$

UPPER LIMIT: $\quad=\operatorname{NORMINV}(0.975, \mu, \sigma)$

Computing the Interval

In the case $\mu=120$ and $\sigma^{2}=16$,

LOWER LIMIT: $\quad=\operatorname{NORMINV}(0.025,120,4)=112.16$

UPPER LIMIT: $\quad=\operatorname{NORMINV}(0.975,120,4)=127.84$

Computing the Interval

The following graph depicts the interval (112.16, 127.84) which contains 95% of the area under the bell curve:

Sample Means

Now we consider how to use the mean \bar{x} of a random sample to estimate the population mean μ.

Sample Means

Now we consider how to use the mean \bar{x} of a random sample to estimate the population mean μ.

Note that \bar{x} is a random variable and as such it usually has a density function, expected value, variance, cdf, and any of the other constructs associated with random variables.

Sample Means

Now we consider how to use the mean \bar{x} of a random sample to estimate the population mean μ.

Note that \bar{x} is a random variable and as such it usually has a density function, expected value, variance, cdf, and any of the other constructs associated with random variables.

Suppose

$$
x=\left\{x_{1}, \ldots, x_{n}\right\}
$$

represents a random sample from some population.

Sample Means

By the definition of a random sample, the individual random variables x_{i} that make up x are:

- Independent
- Identically distributed (i.e., they all have the same pdf)

Sample Means

By the definition of a random sample, the individual random variables x_{i} that make up x are:

- Independent
- Identically distributed (i.e., they all have the same pdf)

The previous two conditions are sometimes abreviated "IID" or "Independent, identically distributed".

Sample Means

Suppose the random variables x_{i} have:

$$
\mathrm{E}\left(x_{i}\right)=\mu \quad \text { and } \quad \operatorname{Var}\left(x_{i}\right)=\sigma^{2}, \quad i=1, \ldots, n
$$

Sample Means

Suppose the random variables x_{i} have:

$$
\mathrm{E}\left(x_{i}\right)=\mu \quad \text { and } \quad \operatorname{Var}\left(x_{i}\right)=\sigma^{2}, \quad i=1, \ldots, n
$$

Then the vector of expected values and variance-covariance matrix associated with the joint distribution of the x_{i} is:

$$
\vec{\mu}=\left[\begin{array}{c}
\mu \\
\mu \\
\vdots \\
\mu
\end{array}\right] \quad \text { and } \quad V=\left[\begin{array}{cccc}
\sigma^{2} & & & \\
& \sigma^{2} & & \\
& & \ddots & \\
& & & \sigma^{2}
\end{array}\right]=\sigma^{2} I
$$

Sample Means

The sample mean \bar{x} is a linear combination $t^{\prime} x$ of the x_{i}, with

$$
t=\left[\begin{array}{c}
\frac{1}{n} \\
\frac{1}{n} \\
\vdots \\
\frac{1}{n}
\end{array}\right]
$$

Sample Means

The sample mean \bar{x} is a linear combination $t^{\prime} x$ of the x_{i}, with

$$
t=\left[\begin{array}{c}
\frac{1}{n} \\
\frac{1}{n} \\
\vdots \\
\frac{1}{n}
\end{array}\right]
$$

From an earlier result, the expected value of \bar{x} is:

$$
\mathrm{E}(\bar{x})=t^{\prime} \vec{\mu}=\sum_{i=1}^{n} \frac{1}{n} \mu=\mu
$$

Sample Means

The variance of \bar{x} is:

$$
\operatorname{Var}(\bar{x})=t^{\prime} V t=\sum_{i=1}^{n} \frac{\sigma^{2}}{n} \cdot n=\frac{\sigma^{2}}{n}
$$

Sample Means

The variance of \bar{x} is:

$$
\operatorname{Var}(\bar{x})=t^{\prime} V t=\sum_{i=1}^{n} \frac{\sigma^{2}}{n} \cdot n=\frac{\sigma^{2}}{n}
$$

These results hold as long as the expected values and variances of the x_{i} exist.

They do not require any assumptions about their distributions.

Sample Means

However, if the x_{i} are normally distributed, that is,

$$
x_{i} \sim N\left(\mu, \sigma^{2}\right), \quad i=1, \ldots, n
$$

then

$$
\bar{x} \sim N\left(\mu, \frac{\sigma^{2}}{n}\right)
$$

Sample Means

However, if the x_{i} are normally distributed, that is,

$$
x_{i} \sim N\left(\mu, \sigma^{2}\right), \quad i=1, \ldots, n
$$

then

$$
\bar{x} \sim N\left(\mu, \frac{\sigma^{2}}{n}\right)
$$

This distribution is the basis for constructing confidence intervals for the parameter μ.

Sample Means

Theorem: If

$$
x_{i} \sim N\left(\mu, \sigma^{2}\right), \quad i=1, \ldots, n
$$

then 95% of the time the interval

$$
\left[\bar{x}-1.96 \sqrt{\frac{\sigma^{2}}{n}}, \bar{x}+1.96 \sqrt{\frac{\sigma^{2}}{n}}\right]
$$

will contain the (unknown) population mean μ.

Sample Means

Theorem: More generally, for $\alpha \in(0,1)$, if

$$
x_{i} \sim N\left(\mu, \sigma^{2}\right), \quad i=1, \ldots, n
$$

then $100(1-\alpha) \%$ of the time the interval

$$
\left[\bar{x}-z_{\alpha / 2} \sqrt{\frac{\sigma^{2}}{n}}, \bar{x}+z_{\alpha / 2} \sqrt{\frac{\sigma^{2}}{n}}\right]
$$

will contain the (unknown) population mean μ.

Sample Means

Theorem: More generally, for $\alpha \in(0,1)$, if

$$
x_{i} \sim N\left(\mu, \sigma^{2}\right), \quad i=1, \ldots, n
$$

then $100(1-\alpha) \%$ of the time the interval

$$
\left[\bar{x}-z_{\alpha / 2} \sqrt{\frac{\sigma^{2}}{n}}, \bar{x}+z_{\alpha / 2} \sqrt{\frac{\sigma^{2}}{n}}\right]
$$

will contain the (unknown) population mean μ. Here

$$
z_{\alpha / 2}=\operatorname{NORMSINV}(1-\alpha / 2)
$$

Sample Means

Example: Suppose x is a random sample of size 16 from a normal population with known variance
$\operatorname{Var}\left(x_{i}\right)=4, \quad i=1, \ldots, n$.
If the sample mean \bar{x} is 13.5 , construct a 95% confidence interval for the population mean μ.

Sample Means

Example: Suppose x is a random sample of size 16 from a normal population with known variance
$\operatorname{Var}\left(x_{i}\right)=4, \quad i=1, \ldots, n$.
If the sample mean \bar{x} is 13.5 , construct a 95% confidence interval for the population mean μ.
Here $\alpha=0.05$ and

$$
z_{\alpha / 2}=\operatorname{NORMSINV}(1-0.05 / 2)=1.96
$$

Sample Means

The 95% confidence interval for the population mean μ is:

$$
\left[\bar{x}-z_{\alpha / 2} \sqrt{\frac{\sigma^{2}}{n}}, \bar{x}+z_{\alpha / 2} \sqrt{\frac{\sigma^{2}}{n}}\right]
$$

Sample Means

The 95% confidence interval for the population mean μ is:

$$
\begin{aligned}
& {\left[\bar{x}-z_{\alpha / 2} \sqrt{\frac{\sigma^{2}}{n}}, \bar{x}+z_{\alpha / 2} \sqrt{\frac{\sigma^{2}}{n}}\right] } \\
= & {\left[13.5-1.96 \sqrt{\frac{4}{16}}, 13.5+1.96 \sqrt{\frac{4}{16}}\right] }
\end{aligned}
$$

Sample Means

The 95% confidence interval for the population mean μ is:

$$
\begin{aligned}
& {\left[\bar{x}-z_{\alpha / 2} \sqrt{\frac{\sigma^{2}}{n}}, \bar{x}+z_{\alpha / 2} \sqrt{\frac{\sigma^{2}}{n}}\right] } \\
= & {\left[13.5-1.96 \sqrt{\frac{4}{16}}, 13.5+1.96 \sqrt{\frac{4}{16}}\right] } \\
= & {\left[13.5-\frac{1.96}{2}, 13.5+\frac{1.96}{2}\right]=[12.52,14.48] }
\end{aligned}
$$

Sample Means

The interpretation is that we are 95% sure that the interval [12.52,14.48] contains the unknown population mean μ.

Sample Means

The interpretation is that we are 95% sure that the interval [12.52,14.48] contains the unknown population mean μ.

More precisely, if we repeated the experiment of drawing a sample of 16 many times and calculated a confidence interval each time, 19 out of 20 of those intervals would contain μ.

Sample Means

The interpretation is that we are 95% sure that the interval [12.52,14.48] contains the unknown population mean μ.

More precisely, if we repeated the experiment of drawing a sample of 16 many times and calculated a confidence interval each time, 19 out of 20 of those intervals would contain μ.

For an individual sample mean, we have no idea whether the interval contains μ or not.

