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Interval Estimation
The maximum likelihood and method of moments estimates
we have developed each consist of a single value

For this reason, they are called point estimates.

An obvious drawback of stating a single value is that it gives
no information about the precision of the estimate.

To address this shortcoming, a different type of estimate
called an interval estimate can be used.
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Unknown Variance
An interval estimate consists of:

An interval (L,U), usually centered at a sample mean
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Unknown Variance
An interval estimate consists of:

An interval (L,U), usually centered at a sample mean

A level of confidence that the interval contains the
(unknown) parameter

The level of confidence is usually stated as a percentage,
say 95%.

The interpretation of this number is that, if a large number
of samples are taken and a new confidence interval (L,U)
is calculated for each of them, 95% of the time the interval
will contain the unknown paramter value.
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Computing the Interval
Suppose a random variable X has a normal distribution
with mean µ = 120 and variance σ2 = 16
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Computing the Interval
Suppose a random variable X has a normal distribution
with mean µ = 120 and variance σ2 = 16

We denote this situation with the notation X ∼ (120, 16)

We are interested in finding an interval centered at µ = 120
that has an area of 0.95.

That is, an interval [L,U ] such that

∫ U

L

1√
2πσ

exp

(

−1

2

(

x − µ

σ

)2
)

dx = 0.95
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Computing the Interval
Suppose a random variable X has a normal distribution
with mean µ = 120 and variance σ2 = 16

We denote this situation with the notation X ∼ (120, 16)

We are interested in finding an interval centered at µ = 120
that has an area of 0.95.

That is, an interval [L,U ] such that

∫ U

L

1√
2πσ

exp

(

−1

2

(

x − µ

σ

)2
)

dx = 0.95

Confidence Intervals for Means - Known Variance – p.4/20



Computing the Interval
It’s impossible to find an antiderivative of

f(x) =
1√
2πσ

exp

(

−1

2

(

x − µ

σ

)2
)

so we can’t evaluate the integral directly.
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Computing the Interval
It’s impossible to find an antiderivative of

f(x) =
1√
2πσ

exp

(

−1

2

(

x − µ

σ

)2
)

so we can’t evaluate the integral directly.

However, spreadsheets and statistical packages provide
functions to evaluate the integral numerically.
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Computing the Interval
The spreadsheet function

=NORMINV(p, µ, σ)

returns the value xp on the x-axis with the property that

∫ xp

−∞

1√
2πσ

exp

(

−1

2

(

x − µ

σ

)2
)

dx = p
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Computing the Interval
If we are interested in an interval centered at µ that
contains 95% of the area under the bell curve associated
with the N(µ, σ2) distribution, the limits can be obtained as:

LOWER LIMIT: =NORMINV(0.025, µ, σ)

UPPER LIMIT: =NORMINV(0.975, µ, σ)
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Computing the Interval

In the case µ = 120 and σ2 = 16,

LOWER LIMIT: =NORMINV(0.025, 120, 4) = 112.16

UPPER LIMIT: =NORMINV(0.975, 120, 4) = 127.84
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Computing the Interval
The following graph depicts the interval (112.16, 127.84)
which contains 95% of the area under the bell curve:
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Sample Means
Now we consider how to use the mean x of a random
sample to estimate the population mean µ.
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Note that x is a random variable and as such it usually has
a density function, expected value, variance, cdf, and any of
the other constructs associated with random variables.
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Sample Means
Now we consider how to use the mean x of a random
sample to estimate the population mean µ.

Note that x is a random variable and as such it usually has
a density function, expected value, variance, cdf, and any of
the other constructs associated with random variables.

Suppose
x = {x1, . . . , xn}

represents a random sample from some population.
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Sample Means
By the definition of a random sample, the individual random
variables xi that make up x are:

Independent

Identically distributed (i.e., they all have the same pdf)
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Sample Means
By the definition of a random sample, the individual random
variables xi that make up x are:

Independent

Identically distributed (i.e., they all have the same pdf)

The previous two conditions are sometimes abreviated "IID"
or "Independent, identically distributed".
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Sample Means
Suppose the random variables xi have:

E(xi) = µ and Var(xi) = σ2, i = 1, . . . , n
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Sample Means
Suppose the random variables xi have:

E(xi) = µ and Var(xi) = σ2, i = 1, . . . , n

Then the vector of expected values and
variance-covariance matrix associated with the joint
distribution of the xi is:

~µ =













µ

µ
...
µ













and V =













σ2

σ2

. . .

σ2













= σ2I
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Sample Means

The sample mean x is a linear combination t′x of the xi,
with

t =













1

n
1

n
...
1

n




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


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Sample Means

The sample mean x is a linear combination t′x of the xi,
with

t =













1

n
1

n
...
1

n













From an earlier result, the expected value of x is:

E(x) = t′~µ =
n
∑

i=1

1

n
µ = µ
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Sample Means
The variance of x is:

Var(x) = t′V t =
n
∑

i=1

σ2

n
· n =

σ2

n
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Sample Means
The variance of x is:

Var(x) = t′V t =
n
∑

i=1

σ2

n
· n =

σ2

n

These results hold as long as the expected values and
variances of the xi exist.

They do not require any assumptions about their
distributions.
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Sample Means
However, if the xi are normally distributed, that is,

xi ∼ N(µ, σ2), i = 1, . . . , n

then

x ∼ N(µ,
σ2

n
)
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Sample Means
However, if the xi are normally distributed, that is,

xi ∼ N(µ, σ2), i = 1, . . . , n

then

x ∼ N(µ,
σ2

n
)

This distribution is the basis for constructing confidence
intervals for the parameter µ.
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Sample Means
Theorem : If

xi ∼ N(µ, σ2), i = 1, . . . , n

then 95% of the time the interval
[

x − 1.96

√

σ2

n
, x + 1.96

√

σ2

n

]

will contain the (unknown) population mean µ.
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Sample Means
Theorem : More generally, for α ∈ (0, 1), if

xi ∼ N(µ, σ2), i = 1, . . . , n

then 100(1 − α)% of the time the interval
[

x − zα/2

√

σ2

n
, x + zα/2

√

σ2

n

]

will contain the (unknown) population mean µ.
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Sample Means
Theorem : More generally, for α ∈ (0, 1), if

xi ∼ N(µ, σ2), i = 1, . . . , n

then 100(1 − α)% of the time the interval
[

x − zα/2

√

σ2

n
, x + zα/2

√

σ2

n

]

will contain the (unknown) population mean µ.

Here
zα/2 =NORMSINV(1 − α/2)
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Sample Means
Example: Suppose x is a random sample of size 16 from a
normal population with known variance
Var(xi) = 4, i = 1, . . . , n.

If the sample mean x is 13.5, construct a 95% confidence
interval for the population mean µ.
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Sample Means
Example: Suppose x is a random sample of size 16 from a
normal population with known variance
Var(xi) = 4, i = 1, . . . , n.

If the sample mean x is 13.5, construct a 95% confidence
interval for the population mean µ.

Here α = 0.05 and

zα/2 =NORMSINV(1 − 0.05/2) = 1.96
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Sample Means
The 95% confidence interval for the population mean µ is:

[

x − zα/2

√

σ2

n
, x + zα/2

√

σ2

n

]
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Sample Means
The 95% confidence interval for the population mean µ is:

[

x − zα/2

√

σ2

n
, x + zα/2

√

σ2

n

]

=

[

13.5 − 1.96

√

4

16
, 13.5 + 1.96

√

4

16

]
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Sample Means
The 95% confidence interval for the population mean µ is:

[

x − zα/2

√

σ2

n
, x + zα/2

√

σ2

n

]

=

[

13.5 − 1.96

√

4

16
, 13.5 + 1.96

√

4

16

]

=

[

13.5 − 1.96

2
, 13.5 +

1.96

2

]

= [12.52, 14.48]
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Sample Means
The interpretation is that we are 95% sure that the interval
[12.52,14.48] contains the unknown population mean µ.
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Sample Means
The interpretation is that we are 95% sure that the interval
[12.52,14.48] contains the unknown population mean µ.

More precisely, if we repeated the experiment of drawing a
sample of 16 many times and calculated a confidence
interval each time, 19 out of 20 of those intervals would
contain µ.

Confidence Intervals for Means - Known Variance – p.20/20



Sample Means
The interpretation is that we are 95% sure that the interval
[12.52,14.48] contains the unknown population mean µ.

More precisely, if we repeated the experiment of drawing a
sample of 16 many times and calculated a confidence
interval each time, 19 out of 20 of those intervals would
contain µ.

For an individual sample mean, we have no idea whether
the interval contains µ or not.
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