Name:

1) A random variable Y has density function

$$
f(y)= \begin{cases}a \cdot(2-y) & \text { if }-2 \leq y \leq 2 \\ 0 & \text { elsewhere }\end{cases}
$$

a) Find the value of a that makes f a valid density function. The density function has to integrate to one over its interval of support:

$$
\int_{-2}^{2} a \cdot(2-y) d y=8 a=1
$$

so $a=1 / 8$.
b) Find the cumulative distribution function $F(y)$ By definition the CDF is

$$
F(y)=\int_{-2}^{y} \frac{2-t}{8} d t=\frac{3}{4}+\frac{y}{4}-\frac{y^{2}}{16}
$$

c) Find the expected value $E(Y)$

$$
E(Y)=\int_{-2}^{2} \frac{2-y}{8} d y=-\frac{2}{3}
$$

d) Find the variance $V(Y)$

$$
E\left(Y^{2}\right)=\int_{-2}^{2} \frac{2-y}{8} d y=\frac{4}{3} \quad V(Y)=E\left(Y^{2}\right)-[E(Y)]^{2}=\frac{4}{3}-\left(-\frac{2}{3}\right)^{2}=\frac{8}{9}
$$

2) A random variable Y has density function

$$
f(y)=\left\{\begin{array}{lll}
k \cdot e^{-y} & \text { if } & y \in[1, \infty) \\
0 & \text { elsewhere }
\end{array}\right.
$$

a) Find the value of k that makes f a valid density function. The density must integrate to one over its support:

$$
\int_{1}^{\infty} k \cdot e^{-y} d y=-\left.k e^{-y}\right|_{1} ^{\infty}=k e^{-1}=1
$$

so $k=e$.
b) Find the cumulative distribution function $F(y)$

$$
F(y)=\int_{1}^{y} f(t) d t=1-e^{1-y}
$$

c) Find the expected value $E(Y)$

$$
E(Y)=\int_{1}^{\infty} y \cdot e e^{-y} d y=2
$$

d) Find the variance $V(Y)$

$$
E\left(Y^{2}\right)=\int_{1}^{\infty} y^{2} \cdot e e^{-y} d y=5 \quad V(Y)=E\left(Y^{2}\right)-[E(Y)]^{2}=1
$$

e) Find the moment-generating function $m(t)$ By definition,

$$
m_{y}(t)=\int_{1}^{\infty} e^{t y} e \cdot e^{-y} d y=\frac{e^{t}}{1-t}
$$

3) A random variable Y has density function

$$
f(y)=\left\{\begin{array}{lll}
k & \text { if } & y \in[1,5] \\
0 & & \text { elsewhere }
\end{array}\right.
$$

a) Find the value of k that makes f a valid density function. The density must integrate to one over its support:

$$
\int_{1}^{5} k d y=\left.k y\right|_{1} ^{5}=4 k=1
$$

so $k=1 / 4$.
b) Find the cumulative distribution function $F(y)$

$$
F(y)=\int_{1}^{y} \frac{1}{4} d t=\frac{y}{4}-\frac{1}{4}
$$

(originally posted incorrectly)
c) Find the expected value $E(Y)$

$$
E(Y)=\int_{1}^{5} y \cdot \frac{1}{4}=\left.\frac{y^{2}}{8}\right|_{1} ^{5}=\frac{25}{8}-\frac{1}{8}=3
$$

d) Find the variance $V(Y)$

$$
E\left(Y^{2}\right)=\int_{1}^{5} \frac{y^{2}}{4} d y=\left.\frac{y^{3}}{12}\right|_{1} ^{5}=\frac{31}{3}
$$

$$
V(Y)=E\left(Y^{2}\right)-[E(Y)]^{2}=\frac{31}{3}-3^{2}=\frac{4}{3}
$$

4) A random variable Y has cumulative distribution function

$$
F(y)=\left\{\begin{array}{lll}
y^{3 / 2} & \text { if } & y \in[0,1] \\
0 & \text { elsewhere }
\end{array}\right.
$$

a) Find the density function $f(y)$. The density function is the derivative of the cumulative distribution function:

$$
f(y)=\frac{d}{d y} y^{3 / 2}=\frac{3}{2} \sqrt{y}
$$

b) Find the expected value $E(Y)$

$$
E(Y)=\int_{0}^{1} y \cdot \frac{3}{2} \sqrt{y}=\frac{3}{5}
$$

c) Find the variance $V(Y)$

$$
\begin{gathered}
E\left(Y^{2}\right)=\int_{0}^{1} y^{2} \cdot \frac{3}{2} \sqrt{y}=\frac{3}{7} \\
V(Y)=E\left(Y^{2}\right)-[E(Y)]^{2}=\frac{3}{7}-\left(\frac{3}{5}\right)^{2}=\frac{12}{175}
\end{gathered}
$$

d) Find the median $\phi .5$ The median satisfies the equation

$$
F(y)=y^{3 / 2}=0.5
$$

so

$$
y^{3}=0.5^{2} \quad \text { and } y=\sqrt[3]{.25}
$$

5) Suppose Y has expected value $E(Y)=\mu=50$ and variance $V(Y)=$ 16.
a) Find an upper bound for the probability that Y takes a value outside the interval $[38,62]$ This is an interval of half-width $12=3 \sqrt{16}=$ 3σ, so $k=3$ and the probability is at most

$$
\frac{1}{k^{2}}=\frac{1}{9}
$$

b) Find a lower bound for the probability that Y takes a value in the interval $[34,66]$ This is an interval of half-width 4σ so $k=4$ and the
probability that Y falls in this interval is at least

$$
1-\frac{1}{k^{2}}=1-\frac{1}{16}=\frac{15}{16}
$$

c) Find a value d such that the probability that Y takes a value outside the interval $[50-d, 50+d]$ is less than or equal to $1 / 10$. In this case we need to find k such that

$$
\frac{1}{k^{2}}=\frac{1}{10} \quad \text { so } \quad k=\sqrt{10} \quad \text { and } \quad d=\sigma \sqrt{10}=4 \sqrt{10}
$$

