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Estimating Proportions
Very often the quantity of interest in an estimation problem
is the proportion p of the population under study that has a
certain characteristic.
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Estimating Proportions
Very often the quantity of interest in an estimation problem
is the proportion p of the population under study that has a
certain characteristic.

In fact, a huge industry has evolved to provide such
estimates, particularly in the areas of public opinion polling
and market research.
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Estimating Proportions
Examples are very plentiful. Typical objectives would be to
estimate the proportion of the population that:

is likely to vote for a certain candidate

supports a certain government policy

has health insurance

is employed

is in the market for a new car

watches a certain television show
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Estimating Proportions
As we have seen, if {x1, x2, . . . , xn} represents a vector of
outcomes of independent Bernoulli trials each with
probability of success p, and X represents the number of
successes in n trials, the maximum likeklihood and method
of moments estimator for p is

p̂ =
X

n
=

number of successes
number of trials
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Estimating Proportions
Interval estimates for p are nearly always constructed using
an approximation based on the fact that when n is large and
the actual population proportion p is not very close to zero
or one, p̂ has an approximately normal distribution:

p̂ ∼ N

(

X

n
,
p(1 − p)

n

)

(approximately)
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Estimating Proportions
Interval estimates for p are nearly always constructed using
an approximation based on the fact that when n is large and
the actual population proportion p is not very close to zero
or one, p̂ has an approximately normal distribution:

p̂ ∼ N

(

X

n
,
p(1 − p)

n

)

(approximately)

A commonly used rule of thumb states that this
approximation is valid when np > 10.
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DeMoivre-Laplace Limit Theorem
The approximation is based on the following theorem:

Theorem (DeMoivre-Laplace) Let X be a binomial random
variable based on n independent Bernoulli trials each with
probability of success p. Then for any numbers a and b,

lim
n→∞

P

(

a ≤ X − np
√

np(1 − p)
≤ b

)

=
1√
2π

∫ b

a
e−z2/2 dz
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DeMoivre-Laplace Limit Theorem
The approximation is based on the following theorem:

Theorem (DeMoivre-Laplace) Let X be a binomial random
variable based on n independent Bernoulli trials each with
probability of success p. Then for any numbers a and b,

lim
n→∞

P

(

a ≤ X − np
√

np(1 − p)
≤ b

)

=
1√
2π

∫ b

a
e−z2/2 dz

DeMoivre-Laplace is actually a special case of a more
general theorem known as the central limit theorem, which
is the justification for the wide use of the normal distribution
with real-world data.
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Confidence Intervals for Proportions
Theorem Let k be the number of successes in n
independent Bernoulli trials with each with (unknown)
probability of success p.

An approximate 100(1 − α/2)% confidence interval for p is
given by:





k

n
− zα/2

√

k
n(1 − k

n)

n
,

k

n
+ zα/2

√

k
n(1 − k

n)

n
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Confidence Intervals for Proportions
Theorem Let k be the number of successes in n
independent Bernoulli trials with each with (unknown)
probability of success p.

An approximate 100(1 − α/2)% confidence interval for p is
given by:





k

n
− zα/2

√

k
n(1 − k

n)

n
,

k

n
+ zα/2

√

k
n(1 − k

n)

n





As before, zα/2 can be obtained from a standard normal
table or from a spreadsheet:

zα/2 = NORMSINV(1 − α/2)
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Confidence Intervals for Proportions
As with the confidence interval for a population mean, the
interpretation of the 95% confidence interval for a proportion
is as follows:

If we repeated the experiment of conducting n independent
trials many times, and constructed a 95% confidence
interval for each repetition, then on average 95% or 19 out
of 20 of the resulting intervals will contain the true
population proportion p.
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Confidence Intervals for Proportions
As with the confidence interval for a population mean, the
interpretation of the 95% confidence interval for a proportion
is as follows:

If we repeated the experiment of conducting n independent
trials many times, and constructed a 95% confidence
interval for each repetition, then on average 95% or 19 out
of 20 of the resulting intervals will contain the true
population proportion p.

(This is not the same as stating that the probability that p
lies within the confidence interval is 95%. Because we are
assuming that p is a parameter, and not a random variable,
we do not associate probabilities with values of p.
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Confidence Intervals for Proportions
Example: A rating survey contacts 1, 000 households during
a certain time slot and finds that 145 are viewing a certain
television program that airs in this time slot.

Construct a 95% confidence interval for the percentage of
households that watched the program.
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Confidence Intervals for Proportions
Example: A rating survey contacts 1, 000 households during
a certain time slot and finds that 145 are viewing a certain
television program that airs in this time slot.

Construct a 95% confidence interval for the percentage of
households that watched the program.

From previous examples we know that
zα/2 = NORMSINV(1 − .05/2) = 1.96, and we are given that
n = 1000 and k = 145, so the approximate 95% confidence
interval for p is:





k

n
− zα/2

√

k
n(1 − k

n)

n
,

k

n
+ zα/2

√

k
n(1 − k

n)

n
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Confidence Intervals for Proportions
Substituting the numbers for this example, the approximate
95% confidence interval is:




145

1000
− 1.96

√

145

1000
(1 − 145

1000
)

1000
,

145

1000
+ 1.96

√

145

1000
(1 − 145

1000
)

1000





or
(

0.145 − 1.96

√

0.145(1 − 0.145)

1000
, 0.145 + 1.96

√

0.145(1 − 0.145)

1000

= (0.123, 0.167)

Binomial Confidence Intervals – p.10/11



Confidence Intervals for Proportions
Substituting the numbers for this example, the approximate
95% confidence interval is:




145

1000
− 1.96

√

145

1000
(1 − 145

1000
)

1000
,

145

1000
+ 1.96

√

145

1000
(1 − 145

1000
)

1000





or
(

0.145 − 1.96

√

0.145(1 − 0.145)

1000
, 0.145 + 1.96

√

0.145(1 − 0.145)

1000

= (0.123, 0.167)
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Confidence Intervals for Proportions
Example 2: A rating survey contacts 1, 000 households
during a certain time slot and finds that 145 are viewing a
certain television program that airs in this time slot.

Construct a 99% confidence interval for the percentage of
households that watched the program.

Binomial Confidence Intervals – p.11/11



Confidence Intervals for Proportions
Example 2: A rating survey contacts 1, 000 households
during a certain time slot and finds that 145 are viewing a
certain television program that airs in this time slot.

Construct a 99% confidence interval for the percentage of
households that watched the program.

In this case zα/2 = NORMSINV(1 − .01/2) = 1.96, n = 1000

and k = 145. The approximate 99% confidence interval for p
is:
(

0.145 − 2.58

√

0.145(1 − 0.145)

1000
, 0.145 + 2.58

√

0.145(1 − 0.145)

1000

= (0.116, 0.174)
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