Averages

Gene Quinn

Averages

Given a finite set of numbers

$$
S=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}
$$

we define the average or arithmetic mean as

$$
\bar{x}=\frac{\sum_{i} x_{i}}{n}
$$

Averages

Given a finite set of numbers

$$
S=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}
$$

we define the average or arithmetic mean as

$$
\bar{x}=\frac{\sum_{i} x_{i}}{n}
$$

Example: Suppose

$$
S=\{1,2,3,4,5,6,7\}
$$

then:

$$
\bar{x}=\frac{\sum_{i} x_{i}}{n}=\frac{1+2+3+4+5+6+7}{7}=\frac{28}{7}=4
$$

Weighted Averages

A generalization of the average is the weighted average.
Suppose we have a finite set of numbers x_{i} as before,

$$
S=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}
$$

In addition, we have a set of weights w_{i},

$$
W=\left\{w_{1}, w_{2}, \ldots, w_{n}\right\}
$$

we define the weighted average of the numbers in S as

$$
\bar{x}_{w}=\frac{\sum_{i} w_{i} \cdot x_{i}}{\sum_{i} w_{i}}
$$

Weighted Averages

Example: Suppose

$$
S=\{1,2,3,4,5,6,7\} \quad \text { and } \quad W=\left\{1, \frac{1}{2}, 1, \frac{1}{2}, 1, \frac{1}{2}, 1\right\}
$$

Weighted Averages

Example: Suppose

$$
S=\{1,2,3,4,5,6,7\} \quad \text { and } \quad W=\left\{1, \frac{1}{2}, 1, \frac{1}{2}, 1, \frac{1}{2}, 1\right\}
$$

then:

$$
\bar{x}_{w}=\frac{\sum_{i} w_{i} \cdot x_{i}}{\sum_{i} w_{i}}=\frac{1 \cdot 1+\frac{1}{2} \cdot 2+1 \cdot 3+\frac{1}{2} \cdot 4+1 \cdot 5+\frac{1}{2} \cdot 6+1 \cdot 7}{1+\frac{1}{2}+1+\frac{1}{2}+1+\frac{1}{2}+1}
$$

or

$$
\bar{x}_{w}=\frac{22}{\left(\frac{11}{2}\right)}=\frac{22 \cdot 2}{11}=4
$$

Weighted Averages

Example: Suppose

$$
S=\{1,2,3,4,5,6,7\} \quad \text { and } \quad W=\left\{1, \frac{1}{2}, 1, \frac{1}{2}, 1, \frac{1}{2}, 1\right\}
$$

then:

$$
\bar{x}_{w}=\frac{\sum_{i} w_{i} \cdot x_{i}}{\sum_{i} w_{i}}=\frac{1 \cdot 1+\frac{1}{2} \cdot 2+1 \cdot 3+\frac{1}{2} \cdot 4+1 \cdot 5+\frac{1}{2} \cdot 6+1 \cdot 7}{1+\frac{1}{2}+1+\frac{1}{2}+1+\frac{1}{2}+1}
$$

or

$$
\bar{x}_{w}=\frac{22}{\left(\frac{11}{2}\right)}=\frac{22 \cdot 2}{11}=4
$$

(The fact that \bar{x}_{w} is the same as \bar{x} from the previous example is coincidence. Usually a weighted average will differ from the unweighted average.)

Weighted Averages with Normalized Weights

Suppose we have a weighted average as before,

$$
\bar{x}_{w}=\frac{\sum_{i} w_{i} \cdot x_{i}}{\sum_{i} w_{i}}
$$

Replace each w_{i} with $v_{i}=a \cdot w_{i}$, where a is an arbitrary nonzero constant.
Now the weighted average becomes
$\bar{x}_{v}=\frac{\sum_{i} v_{i} \cdot x_{i}}{\sum_{i} v_{i}}=\frac{\sum_{i} a \cdot w_{i} \cdot x_{i}}{\sum_{i} a \cdot w_{i}}=\frac{a \sum_{i} w_{i} \cdot x_{i}}{a \sum_{i} w_{i}}=\frac{\sum_{i} w_{i} \cdot x_{i}}{\sum_{i} w_{i}}=\bar{x}_{w}$

Weighted Averages with Normalized Weights

Suppose we have a weighted average as before,

$$
\bar{x}_{w}=\frac{\sum_{i} w_{i} \cdot x_{i}}{\sum_{i} w_{i}}
$$

Replace each w_{i} with $v_{i}=a \cdot w_{i}$, where a is an arbitrary nonzero constant.
Now the weighted average becomes
$\bar{x}_{v}=\frac{\sum_{i} v_{i} \cdot x_{i}}{\sum_{i} v_{i}}=\frac{\sum_{i} a \cdot w_{i} \cdot x_{i}}{\sum_{i} a \cdot w_{i}}=\frac{a \sum_{i} w_{i} \cdot x_{i}}{a \sum_{i} w_{i}}=\frac{\sum_{i} w_{i} \cdot x_{i}}{\sum_{i} w_{i}}=\bar{x}_{w}$
This result shows that we can scale the weights any way we choose without changing the result.

Weighted Averages with Normalized Weights

The most beneficial choice would be to scale the weights so that

$$
\sum_{i} w_{i}=1
$$

and in this case the formula

$$
\bar{x}_{w}=\frac{\sum_{i} w_{i} \cdot x_{i}}{\sum_{i} w_{i}}
$$

simplifies to

$$
\bar{x}_{w}=\sum_{i} w_{i} \cdot x_{i}
$$

Weighted Averages with Normalized Weights

The most beneficial choice would be to scale the weights so that

$$
\sum_{i} w_{i}=1
$$

and in this case the formula

$$
\bar{x}_{w}=\frac{\sum_{i} w_{i} \cdot x_{i}}{\sum_{i} w_{i}}
$$

simplifies to

$$
\bar{x}_{w}=\sum_{i} w_{i} \cdot x_{i}
$$

It's always possible to choose weights that sum to 1 ; Let

The Continuous Case

Define the average of a continuous function f on an interval $[a, b]$ as

$$
\bar{x}=\frac{\int_{a}^{b} f(x) d x}{b-a}
$$

This is a reasonable definition because \bar{x} is the height of a rectangle with base $b-a$ whose area is the same as the area under the graph of f from $x=a$ to $x=b$.

The Continuous Case

Define the average of a continuous function f on an interval $[a, b]$ as

$$
\bar{x}=\frac{\int_{a}^{b} f(x) d x}{b-a}
$$

This is a reasonable definition because \bar{x} is the height of a rectangle with base $b-a$ whose area is the same as the area under the graph of f from $x=a$ to $x=b$.
Example: The average value of $f(x)=x^{2}$ over the interval from 0 to 2 will be:

$$
\bar{x}=\frac{\int_{0}^{2} x^{2} d x}{2-0}=\frac{\left.\frac{x^{3}}{3}\right|_{0} ^{2}}{2}=\frac{\frac{8}{3}-\frac{0}{3}}{2}=\frac{4}{3}
$$

Weighted Averages of Continuous Functions

Suppose f is continuous on the interval $[a, b]$ and a weight function w is also continuous on $[a, b]$.

Define the weighted average of f on the interval as

$$
\bar{x}_{w}=\frac{\int_{a}^{b} w(x) \cdot f(x) d x}{\int_{a}^{b} w(x) d x}
$$

Weighted Averages of Continuous Functions

Suppose f is continuous on the interval $[a, b]$ and a weight function w is also continuous on $[a, b]$.
Define the weighted average of f on the interval as

$$
\bar{x}_{w}=\frac{\int_{a}^{b} w(x) \cdot f(x) d x}{\int_{a}^{b} w(x) d x}
$$

Example: The average value of $f(x)=x^{2}$ with weight function $w(x)=x$ over the interval from 0 to 2 will be:

$$
\bar{x}_{w}=\frac{\int_{0}^{2} x \cdot x^{2} d x}{\int_{0}^{2} x d x}=\frac{\left.\frac{x^{3}}{3}\right|_{0} ^{2}}{\left.\frac{x^{2}}{2}\right|_{0} ^{2}}=\frac{\frac{8}{3}-\frac{0}{3}}{\frac{4}{2}-\frac{0}{2}}=\frac{4}{3}
$$

Normalized Weights

Suppose we have a weighted average of a continuous function f on an interval $[a, b]$ with (continuous) weight function $w(x)$. Then

$$
\bar{x}_{w}=\frac{\int_{a}^{b} w(x) \cdot f(x) d x}{\int_{a}^{b} w(x) d x}
$$

Normalized Weights

Suppose we have a weighted average of a continuous function f on an interval $[a, b]$ with (continuous) weight function $w(x)$. Then

$$
\bar{x}_{w}=\frac{\int_{a}^{b} w(x) \cdot f(x) d x}{\int_{a}^{b} w(x) d x}
$$

Consider what happens if we use the weight function $v(x)=c \cdot w(x)$ where c is some nonzero constant:

$$
\begin{aligned}
& \bar{x}_{v}=\frac{\int_{a}^{b} v(x) \cdot f(x) d x}{\int_{a}^{b} v(x) d x}=\frac{\int_{a}^{b} c \cdot w(x) \cdot f(x) d x}{\int_{a}^{b} c \cdot w(x) d x} \\
& =\frac{c \int_{a}^{b} w(x) \cdot f(x) d x}{c \int_{a}^{b} w(x) d x}=\frac{\int_{a}^{b} w(x) \cdot f(x) d x}{\int_{a}^{b} w(x) d x}=\bar{x}_{w}
\end{aligned}
$$

Normalized Weights

As with the discrete case, we can simplify the formula for the weighted average

$$
\bar{x}_{w}=\frac{\int_{a}^{b} w(x) \cdot f(x) d x}{\int_{a}^{b} w(x) d x}
$$

by choosing a weight function with

$$
\int_{a}^{b} w(x) d x=1
$$

Normalized Weights

As with the discrete case, we can simplify the formula for the weighted average

$$
\bar{x}_{w}=\frac{\int_{a}^{b} w(x) \cdot f(x) d x}{\int_{a}^{b} w(x) d x}
$$

by choosing a weight function with

$$
\int_{a}^{b} w(x) d x=1
$$

Now the weighted average formula simplifies to:

$$
\bar{x}_{w}=\int_{a}^{b} w(x) \cdot f(x) d x
$$

