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Estimators
We may give a very broad definition of an estimator as a
function of a random sample x = (x1, . . . , xn):

θ̂ = h(x1, x2, . . . , xn)
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Estimators
We may give a very broad definition of an estimator as a
function of a random sample x = (x1, . . . , xn):

θ̂ = h(x1, x2, . . . , xn)

Over time, many ideas about what properties are desirable
in an estimator have evolved.

One of the simplest notions is that of unbiasedness.
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Unbiasedness

Ideally, we would like an estimator θ̂ to neither consistently
overestimate nor consistently underestimate the population
parameter θ.
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Unbiasedness

Ideally, we would like an estimator θ̂ to neither consistently
overestimate nor consistently underestimate the population
parameter θ.

We can state this in terms of the expected value of the
estimator, E(θ̂):

We would like to have:

E(θ̂) = θ

regardless of the actual value of the population parameter θ.

Unbiased Estimators – p.3/16



Unbiasedness
Definition : Let x1, . . . , xn be a random sample from a
population with continuous pdf fX(x; θ) where θ is an
unknown parameter.

An estimator
θ̂ = h(x1, . . . , xn)

is said to be unbiased [for θ] if

E(θ̂) = θ ∀θ

regardless of the actual value of the population parameter θ.
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Unbiasedness
Definition : Let x1, . . . , xn be a random sample from a
population with continuous pdf fX(x; θ) where θ is an
unknown parameter.

An estimator
θ̂ = h(x1, . . . , xn)

is said to be unbiased [for θ] if

E(θ̂) = θ ∀θ

regardless of the actual value of the population parameter θ.

A similar definition can be stated for discrete random
variables.

Unbiased Estimators – p.4/16



Unbiasedness
Example : Let x1, . . . , xn be a random sample from a
N(µ, σ2) population.

We will show that the sample mean

x =
n

∑

i=1

xi

is an unbiased estimator for the population mean µ.
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Unbiasedness
Example : Let x1, . . . , xn be a random sample from a
N(µ, σ2) population.

We will show that the sample mean

x =
n

∑

i=1

xi

is an unbiased estimator for the population mean µ.

The moment-generating function MX(t) for each of the xi is:

MX(t) = exp

(

tµ +
1

2
t2σ2

)
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Unbiasedness
Now x can be thought of as the sum of the transformed
random variables yi = xi/n.
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Unbiasedness
Now x can be thought of as the sum of the transformed
random variables yi = xi/n.

From a theorem on moment generating functions, we know
that

MY (t) = MX(t/n) = exp

(

µ
t

n
+

1

2

t2σ2

n2

)
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Unbiasedness
Now x can be thought of as the sum of the transformed
random variables yi = xi/n.

From a theorem on moment generating functions, we know
that

MY (t) = MX(t/n) = exp

(

µ
t

n
+

1

2

t2σ2

n2

)

A second theorem states that moment-generating function
of the sum of the n independent random variables yi is the
product of their individual mgfs:

Mx(t) =
n

∏

i=1

MY (t) =
n

∏

i=1

exp

(

µ
t

n
+

1

2

t2σ2

n2

)
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Unbiasedness
We can write the product on the right hand side as a single
exponential by adding the exponents,

Mx(t) = exp

(

µt +
1

2

σ2

n
t2

)
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Unbiasedness
We can write the product on the right hand side as a single
exponential by adding the exponents,

Mx(t) = exp

(

µt +
1

2

σ2

n
t2

)

By inspection, we see that the right hand side is the
moment-generating function of a normal random variable
with expected value µ and variance σ2/n.
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Unbiasedness
We can write the product on the right hand side as a single
exponential by adding the exponents,

Mx(t) = exp

(

µt +
1

2

σ2

n
t2

)

By inspection, we see that the right hand side is the
moment-generating function of a normal random variable
with expected value µ and variance σ2/n.

This establishes that

E(x) = µ

so the sample mean x is an unbiased estimator for the
population mean µ.
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Unbiasedness
Now suppose x = (x1, . . . , xn) is a random sample from a
N(µ, σ2) population and consider whether the estimator

σ̂2 =
1

n

n
∑

i=1

(xi − x)2

is unbiased for σ2.
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Unbiasedness
Now suppose x = (x1, . . . , xn) is a random sample from a
N(µ, σ2) population and consider whether the estimator

σ̂2 =
1

n

n
∑

i=1

(xi − x)2

is unbiased for σ2.

By definition,

E(σ̂2) = E

[

1

n

n
∑

i=1

(xi − x)2

]
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Unbiasedness
Expanding the square,

E(σ̂2) = E

[

1

n

n
∑

i=1

(

x2

i − 2xix + x2
)

]
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Unbiasedness
Expanding the square,

E(σ̂2) = E

[

1

n

n
∑

i=1

(

x2

i − 2xix + x2
)

]

Since the expectation of a sum is the sum of the
expectations, we can write

E(σ̂2) = E

[

1

n

n
∑

i=1

x2

i

]

− E

[

1

n

n
∑

i=1

2xix

]

+ E

[

1

n

n
∑

i=1

x2

]
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Unbiasedness

E(σ̂2) = E

[

1

n

n
∑

i=1

x2

i

]

− E

[

1

n

n
∑

i=1

2xix

]

+ E

[

1

n

n
∑

i=1

x2

]

For the purpose of summation, x is a constant so we can
move it outside the sum (and move 1/n inside):

E(σ̂2) = E

[

1

n

n
∑

i=1

x2

i

]

− E

[

2x

n
∑

i=1

xi

n

]

+ E

[

x2

n
∑

i=1

1

n

]
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Unbiasedness

E(σ̂2) = E

[

1

n

n
∑

i=1

x2

i

]

− E

[

1

n

n
∑

i=1

2xix

]

+ E

[

1

n

n
∑

i=1

x2

]

For the purpose of summation, x is a constant so we can
move it outside the sum (and move 1/n inside):

E(σ̂2) = E

[

1

n

n
∑

i=1

x2

i

]

− E

[

2x

n
∑

i=1

xi

n

]

+ E

[

x2

n
∑

i=1

1

n

]

E(σ̂2) = E

[

1

n

n
∑

i=1

x2

i

]

− E [2x (x)] + E
[

x2 (1)
]
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Unbiasedness

E(σ̂2) = E

[

1

n

n
∑

i=1

x2

i

]

− 2E
[

x2
]

+ E
[

x2
]
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Unbiasedness

E(σ̂2) = E

[

1

n

n
∑

i=1

x2

i

]

− 2E
[

x2
]

+ E
[

x2
]

E(σ̂2) = E

[

1

n

n
∑

i=1

x2

i

]

− E
[

x2
]
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Unbiasedness

E(σ̂2) = E

[

1

n

n
∑

i=1

x2

i

]

− 2E
[

x2
]

+ E
[

x2
]

E(σ̂2) = E

[

1

n

n
∑

i=1

x2

i

]

− E
[

x2
]

E(σ̂2) =
1

n
E

[

n
∑

i=1

x2

i

]

− E
[

x2
]
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Unbiasedness

E(σ̂2) = E

[

1

n

n
∑

i=1

x2

i

]

− 2E
[

x2
]

+ E
[

x2
]

E(σ̂2) = E

[

1

n

n
∑

i=1

x2

i

]

− E
[

x2
]

E(σ̂2) =
1

n
E

[

n
∑

i=1

x2

i

]

− E
[

x2
]

E(σ̂2) =
1

n

n
∑

i=1

E
[

x2

i

]

− E
[

x2
]
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Unbiasedness
Now

xi ∼ N(µ, σ2), i = 1, . . . , n
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Unbiasedness
Now

xi ∼ N(µ, σ2), i = 1, . . . , n

This means that

σ2 = E(x2

i ) − [E(xi)]
2 = E(x2

i ) − µ2

from which it follows that

E(x2

i ) = σ2 + µ2
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Unbiasedness
Also

x ∼ N

(

µ,
σ2

n

)
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Unbiasedness
Also

x ∼ N

(

µ,
σ2

n

)

This means that

σ2

n
= E(x2) − [E(x)]2 = E(x2) − µ2

from which it follows that

E(x2) =
σ2

n
+ µ2
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Unbiasedness
Now by substitution since

E(x2

i ) = σ2 + µ2 and E(x2) =
σ2

n
+ µ2

we can rewrite the expression

E(σ̂2) =
1

n

n
∑

i=1

E
[

x2

i

]

− E
[

x2
]

as

E(σ̂2) =
1

n

n
∑

i=1

(

σ2 + µ2
)

−

(

σ2

n
− µ2

)

=
(

σ2 + µ2
)

−

(

σ2

n
− µ2

)
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Unbiasedness
Then

E(σ̂2) =

(

1 −
1

n

)

σ2

or

E(σ̂2) =
n − 1

n
σ2
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Unbiasedness
Then

E(σ̂2) =

(

1 −
1

n

)

σ2

or

E(σ̂2) =
n − 1

n
σ2

Because
E(σ̂2) 6= σ2

σ̂2 =
1

n

n
∑

i=1

(xi − x)2

is not an unbiased estimator for σ2.
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Unbiasedness
However,

E
(

n

n − 1
σ̂2

)

=
n

n − 1
E

(

σ̂2
)

=

(

n

n − 1

)(

n − 1

n

)

σ2 = σ2
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Unbiasedness
However,

E
(

n

n − 1
σ̂2

)

=
n

n − 1
E

(

σ̂2
)

=

(

n

n − 1

)(

n − 1

n

)

σ2 = σ2

so
n

n − 1
σ̂2 = S2 =

1

n − 1

n
∑

i=1

(xi − x)2

is an unbiased estimator for σ2.
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Unbiasedness
However,

E
(

n

n − 1
σ̂2

)

=
n

n − 1
E

(

σ̂2
)

=

(

n

n − 1

)(

n − 1

n

)

σ2 = σ2

so
n

n − 1
σ̂2 = S2 =

1

n − 1

n
∑

i=1

(xi − x)2

is an unbiased estimator for σ2.

As n becomes large, the difference between σ̂2, the
maximum likelihood estimate, and S2, the method of
moments estimate, becomes negligible.
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