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Estimators

We may give a very broad definition of an estimator as a
function of a random sample = = (z1,...,zy):

H = h(x1,x2,...,Tn)
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Estimators

We may give a very broad definition of an estimator as a
function of a random sample = = (z1,...,zy):

H = h(x1,x2,...,Tn)

Over time, many ideas about what properties are desirable
In an estimator have evolved.

One of the simplest notions is that of unbiasedness.

Unbiased Estimators — p.2/1



Unbiasedness

Ideally, we would like an estimator 6 to neither consistently

overestimate nor consistently underestimate the population
parameter 6.
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Unbiasedness

Ideally, we would like an estimator 6 to neither consistently
overestimate nor consistently underestimate the population
parameter 6.

We can state this in terms of the expected value of the

A

estimator, E(6):

We would like to have:
E() = 6

regardless of the actual value of the population parameter 6.
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Unbiasedness

Definition : Let x¢,..., 2, be a random sample from a
population with continuous pdf fx(x;#) where 6 Is an
unknown parameter.

An estimator

AN

0 = h(xy,...,2p)
IS said to be unbiased [for ] if

A

E@) =60 V0

regardless of the actual value of the population parameter 6.
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Unbiasedness

Definition : Let x¢,..., 2, be a random sample from a
population with continuous pdf fx(x;#) where 6 Is an
unknown parameter.

An estimator

AN

0 = h(xy,...,2p)
IS said to be unbiased [for ] if

A

E(O) =0 Vo
regardless of the actual value of the population parameter 6.

A similar definition can be stated for discrete random
variables.
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Unbiasedness

Example: Let x1,..., 2, be a random sample from a
N (i, o) population.

We will show that the sample mean

n
T = E €T;
1=1

IS an unbiased estimator for the population mean .
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Unbiasedness

Example: Let x1,..., 2, be a random sample from a
N (i, o) population.

We will show that the sample mean

n
T = E €T;
1=1

IS an unbiased estimator for the population mean .

The moment-generating function M x(t) for each of the z; Is:

1
Mx(t) = exp (t,u + 575202)
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Unblasedness

Now z can be thought of as the sum of the transformed
random variables y; = xz;/n.
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Unbiasedness

Now z can be thought of as the sum of the transformed
random variables y; = xz;/n.

From a theorem on moment generating functions, we know
that

t  1t%c?
My (t) = Mx(t/n) = exp <M5+§?>
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Unbiasedness

Now z can be thought of as the sum of the transformed
random variables y; = xz;/n.

From a theorem on moment generating functions, we know
that

t  1t%c?
My (t) = Mx(t/n) = exp <M5+§7>

A second theorem states that moment-generating function
of the sum of the n independent random variables y; Is the
product of their individual mgfs:

Mett) = T[v0) = TLexp (e + 555 )
1=1

. n 2n
1=1
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Unblasedness

We can write the product on the right hand side as a single
exponential by adding the exponents,

2

lo

Unbiased Estimators — p.7/1



Unbiasedness

We can write the product on the right hand side as a single
exponential by adding the exponents,

1 o2
T p— _— 2
Mz(t) = exp (,ut—l— > nt )
By inspection, we see that the right hand side is the

moment-generating function of a normal random variable
with expected value 1 and variance o2 /n.

Unbiased Estimators — p.7/1



Unbiasedness

We can write the product on the right hand side as a single
exponential by adding the exponents,

1 o2
M=(t) = t 2 f?
(t) = exp (pt + 3 7-2)

By inspection, we see that the right hand side is the
moment-generating function of a normal random variable

with expected value 1 and variance o2 /n.

This establishes that
E(@) = p

so the sample mean 7 Is an unbiased estimator for the
population mean .
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Unbiasedness

Now suppose x = (x1,...,z,) IS @ random sample from a
N (11, o) population and consider whether the estimator

is unbiased for 2.
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Unbiasedness

Now suppose x = (x1,...,z,) IS @ random sample from a
N (11, o) population and consider whether the estimator

is unbiased for o2.
By definition,
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Unblasedness

Expanding the square,

E(6%) = E

— Z (:sz — 22, + 52)
1=1




Unbiasedness

Expanding the square,

1 n

— Z (51322 — 22T + 52)
1=1

n -

Since the expectation of a sum is the sum of the
expectations, we can write

'1 n ] '1 n ] '1 n ]
E(6%) = E EZ:@? —E 522:5@ +E EZEQ
=1 L =1 i =1
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Unbiasedness

E(6%) = E

_ " _
1 E : 2
n -

L =1 i

_ . . _
— E 21T
n <

L =1 i

+E

_ " _
1
-7
n -

L =1 |

For the purpose of summation, 7 is a constant so we can
move it outside the sum (and move 1/n inside):

_ " _
1 2 : 2
n -

L =1 i

—E

_ - ;1:»_
QEE -t
: n

i 1=1 _

+E

_ " _
9 1
)

- n

_ =1
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Unbiasedness

E(6%) = E

_ " _
1 E : 2
n -

L =1 i

_ . . _
— E 21T
n <

L =1 i

+E

_ " _
1
-7
n -

L =1 |

For the purpose of summation, 7 is a constant so we can
move it outside the sum (and move 1/n inside):

E(6%) = E

_ " _
1 2 : 2
n -

L =1 i

_ " _
1 E : 2
n “

L =1 i

—E

_ . _
_ Xq
2T g —
- n

_ 1=1 _

+E

_ " _
9 1
)

- n

_ =1

—E[2z ()] + E [7° (1)]
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Unblasedness

E(6°) = E|= Y 7| —2E[7*] +E [7°]




Unblasedness

E(6°) = E % v; | —2E [7°] + E [7°]
| =1
E(6%) = E % v; | — E [7°]
| =1




Unblasedness

E(6%) = E % v; | — 2E [7%] + E [7°]
| =1
E(6°) = E % 2| — E [77]
| =1
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Unblasedness

Now
x; ~ N(p,0%), i=1,...,n




Unblasedness

Now
x; ~ N(p,0%), i=1,...,n

This means that

from which it follows that

E(zf) = o +p
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Unblasedness

Also




Unblasedness

Also

from which it follows that

E(7%) =
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Unbiasedness

Now by substitution since
E(z?) = o+ p* and E@°) = — +pu
we can rewrite the expression

E@6?) = - Y E[?] - E[?]
1=1

E(52) = %i(02+u2)_<0_2_u2> _ (02+M2)—<0_2_M2)

n
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Unblasedness

Then

or
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Unblasedness

Then
E(6%) = (l—l) o
n
or
— 1
E(6%) = T
n
Because
E(6%) # o*
52 = L3 (0 — 7y
nz':l Z

is not an unbiased estimator for 2.
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Unblasedness

However,




Unblasedness

However,

1=1

IS an unbiased estimator for 2.
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Unbiasedness

However,

1=1
IS an unbiased estimator for 2.

As n becomes large, the difference between 52, the

maximum likelihood estimate, and S?, the method of
moments estimate, becomes negligible.
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