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Sufficient Estimators
A more abstract property of considerable theoretical
importance is sufficiency
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A more abstract property of considerable theoretical
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Losely speaking, an estimator θ̂ is said to be a sufficient
estimator for the parameter θ if θ̂ contains all of the
information relevant to θ that it is possible to get from the
sample.
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Sufficient Estimators
A more abstract property of considerable theoretical
importance is sufficiency

Losely speaking, an estimator θ̂ is said to be a sufficient
estimator for the parameter θ if θ̂ contains all of the
information relevant to θ that it is possible to get from the
sample.

A common example is the following: Very often the sample
mean x is a sufficient estimator for the population mean µ.

If we know the sample mean x, knowledge of the individual
xi values often does not provide any additional information
about µ.
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Sufficient Estimators
A formal definition of sufficiency is necessarily rather
technical.
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Sufficient Estimators
A formal definition of sufficiency is necessarily rather
technical.

Suppose x1, . . . , xn is a random sample of size n from a
distribution with density function f(x; θ).

The estimator θ̂ = h(x1, . . . , xn) is said to be sufficient for θ
if the likelihood function of the sample factors into the
product of the density function of θ̂ and other factors that do
not involve θ.

That is,

L(θ) =
n

∏

i=1

f(xi; θ) = f
θ̂
(θ̂; θ) · b(x1, . . . , xn)
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Sufficient Estimators
Example : We saw that for a random sample x1, . . . , xn from
an exponential distribution, the maximum likelihood and
method of moments estimators are both equal to the
sample mean x,

θ̂ =
1

n

n
∑

i=1

xi = x

Sufficient Estimators – p.4/7



Sufficient Estimators
The likelihood function of the sample is

L(θ) =

n
∏

i=1

1

θ
exp

(

−

xi

θ

)

=
1

θn
exp

(

−

nx

θ

)

Note that, once we have written L(θ) in terms of x, the
individual xi values no longer appear in the expression.
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Sufficient Estimators
The likelihood function of the sample is

L(θ) =

n
∏

i=1

1

θ
exp

(

−

xi

θ

)

=
1

θn
exp

(

−

nx

θ

)

Note that, once we have written L(θ) in terms of x, the
individual xi values no longer appear in the expression.

This reflects the fact that x is a sufficient estimator for θ.
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Sufficient Estimators
Of course, the likelihood function L(θ) does depend on the
xi values in the sense that x depends on the xi values.
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Sufficient Estimators
Of course, the likelihood function L(θ) does depend on the
xi values in the sense that x depends on the xi values.

However, any random sample z1, . . . , zn with sample mean
equal to x will produce the same likelihood function.
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Sufficient Estimators
Of course, the likelihood function L(θ) does depend on the
xi values in the sense that x depends on the xi values.

However, any random sample z1, . . . , zn with sample mean
equal to x will produce the same likelihood function.

When we say that L(θ) does not depend on the individual xi

values, we mean that for a given value of x, all random
samples with sample mean equal to x have the same
likelihood.

Sufficient Estimators – p.6/7



Sufficient Estimators
Example : Let x1, . . . , xn be a sequence of zeros and ones
corresponding to a random sample consisting of n
independent Bernoulli trials with probability of success p.
The likelihood function of the sample is

L(p) =
n

∏

i=1

pxi(1 − p)1−xi = p
P

xi(1 − p)n−
P

xi

and the maximum likelihood estimator of p is p̂ =
∑

xi/n = x
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Sufficient Estimators
Example : Let x1, . . . , xn be a sequence of zeros and ones
corresponding to a random sample consisting of n
independent Bernoulli trials with probability of success p.
The likelihood function of the sample is

L(p) =
n

∏

i=1

pxi(1 − p)1−xi = p
P

xi(1 − p)n−
P

xi

and the maximum likelihood estimator of p is p̂ =
∑

xi/n = x

We can write the likelihood function in terms of x as

L(p) = pnx(1 − p)n(1−x)

and once again the xi values disappear from the
expression, indicating that x is a sufficient estimator for p.
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Sufficient Estimators
As before, once x is fixed, the likelihood function L(p) no
longer depends on the individual xi values.
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