Gene Quinn

A more abstract property of considerable theoretical importance is *sufficiency*

A more abstract property of considerable theoretical importance is *sufficiency*

Losely speaking, an estimator $\hat{\theta}$ is said to be a **sufficient** estimator for the parameter θ if $\hat{\theta}$ contains all of the information relevant to θ that it is possible to get from the sample.

A more abstract property of considerable theoretical importance is *sufficiency*

Losely speaking, an estimator $\hat{\theta}$ is said to be a **sufficient estimator** for the parameter θ if $\hat{\theta}$ contains all of the information relevant to θ that it is possible to get from the sample.

A common example is the following: Very often the sample mean \overline{x} is a sufficient estimator for the population mean μ .

If we know the sample mean \overline{x} , knowledge of the individual x_i values often does not provide any additional information about μ .

A formal definition of sufficiency is necessarily rather technical.

A formal definition of sufficiency is necessarily rather technical.

Suppose x_1, \ldots, x_n is a random sample of size *n* from a distribution with density function $f(x; \theta)$.

The estimator $\hat{\theta} = h(x_1, \dots, x_n)$ is said to be **sufficient** for θ if the likelihood function of the sample factors into the product of the density function of $\hat{\theta}$ and other factors that do not involve θ .

That is,

$$L(\theta) = \prod_{i=1}^{n} f(x_i; \theta) = f_{\hat{\theta}}(\hat{\theta}; \theta) \cdot b(x_1, \dots, x_n)$$

Example: We saw that for a random sample x_1, \ldots, x_n from an exponential distribution, the maximum likelihood and method of moments estimators are both equal to the sample mean \overline{x} ,

$$\hat{\theta} = \frac{1}{n} \sum_{i=1}^{n} x_i = \overline{x}$$

The likelihood function of the sample is

$$L(\theta) = \prod_{i=1}^{n} \frac{1}{\theta} \exp\left(-\frac{x_i}{\theta}\right) = \frac{1}{\theta^n} \exp\left(-\frac{n\overline{x}}{\theta}\right)$$

Note that, once we have written $L(\theta)$ in terms of \overline{x} , the individual x_i values no longer appear in the expression.

The likelihood function of the sample is

$$L(\theta) = \prod_{i=1}^{n} \frac{1}{\theta} \exp\left(-\frac{x_i}{\theta}\right) = \frac{1}{\theta^n} \exp\left(-\frac{n\overline{x}}{\theta}\right)$$

Note that, once we have written $L(\theta)$ in terms of \overline{x} , the individual x_i values no longer appear in the expression.

This reflects the fact that \overline{x} is a sufficient estimator for θ .

Of course, the likelihood function $L(\theta)$ does depend on the x_i values in the sense that \overline{x} depends on the x_i values.

Of course, the likelihood function $L(\theta)$ does depend on the x_i values in the sense that \overline{x} depends on the x_i values.

However, *any* random sample z_1, \ldots, z_n with sample mean equal to \overline{x} will produce the same likelihood function.

Of course, the likelihood function $L(\theta)$ does depend on the x_i values in the sense that \overline{x} depends on the x_i values.

However, *any* random sample z_1, \ldots, z_n with sample mean equal to \overline{x} will produce the same likelihood function.

When we say that $L(\theta)$ does not depend on the individual x_i values, we mean that for a given value of \overline{x} , all random samples with sample mean equal to \overline{x} have the same likelihood.

Example: Let x_1, \ldots, x_n be a sequence of zeros and ones corresponding to a random sample consisting of n independent Bernoulli trials with probability of success p. The likelihood function of the sample is

$$L(p) = \prod_{i=1}^{n} p^{x_i} (1-p)^{1-x_i} = p^{\sum x_i} (1-p)^{n-\sum x_i}$$

and the maximum likelihood estimator of p is $\hat{p} = \sum x_i/n = \overline{x}$

Example: Let x_1, \ldots, x_n be a sequence of zeros and ones corresponding to a random sample consisting of n independent Bernoulli trials with probability of success p. The likelihood function of the sample is

$$L(p) = \prod_{i=1}^{n} p^{x_i} (1-p)^{1-x_i} = p^{\sum x_i} (1-p)^{n-\sum x_i}$$

and the maximum likelihood estimator of p is $\hat{p} = \sum x_i/n = \overline{x}$

We can write the likelihood function in terms of \overline{x} as

$$L(p) = p^{n\overline{x}}(1-p)^{n(1-\overline{x})}$$

and once again the x_i values disappear from the expression, indicating that \overline{x} is a sufficient estimator for p.

As before, once \overline{x} is fixed, the likelihood function L(p) no longer depends on the individual x_i values.