1)

$\alpha=.05, z_{\alpha / 2}=1.96$, which can be obtained with the spreadsheet formula $=\operatorname{NORMSINV}(1-\alpha / 2)$, so the 95% confidence interval is:

$$
0.78 \pm 1.96 \sqrt{\frac{(.78)(.22)}{1000}}=0.78 \pm .026=(.754, .806)
$$

The margin of error is 2.6 percent. Assuming the worst case, which occurs when $p=0.5$, produces a margin of error of 3.1 percent.
2) Problem $8.64 \alpha=.02, z_{\alpha / 2}=2.326$, so the 98% confidence interval is:
$(0.77-0.35) \pm 2.326 \sqrt{\frac{(.77)(.23)}{150}+\frac{(.35)(.65)}{340}}=0.42 \pm .10=(.32, .52)$
The margin of error is 2.6 percent. Assuming the worst case, which occurs when $p=0.5$, produces a margin of error of 3.1 percent.
b) No, 60 is outside the confidence interval.

3)

From a spreadsheet or calculator, we determine that:

	Spring	Summer
n	5	4
s^{2}	98.06	582.26
mean	15.62	72.28

The pooled variance is:

$$
s_{p}^{2}=\frac{(4)(98.06)+(3)(582.26)}{7}=305.57
$$

and the 95% confidence interval will use a $t_{\alpha / 2}$ with $5+4-2=7$ degrees of freedom. Using the table in the text, or the spreadsheet function $=\operatorname{TINV}(.05,7)$, we determine that $t_{\alpha / 2}=2.365$
$(15.62-72.28) \pm 2.365 \sqrt{305.57\left(\frac{1}{5}+\frac{1}{4}\right)}=-56.6 \pm 27.73=(-84.39,-28.93)$
We assumed that the two random samples were independently selected from normal populations with equal variances.
4) The pooled variance is:

$$
s_{p}^{2}=\frac{(3)(.001)+(4)(.002)}{7}=.0016
$$

and the 95% confidence interval will use a $t_{\alpha / 2}$ with $4+5-2=7$ degrees of freedom. Using the table in the text, or the spreadsheet function $=\operatorname{TINV}(.05,7)$, we determine that $t_{\alpha / 2}=2.365$

$$
\begin{equation*}
(.22-.17) \pm 2.365 \sqrt{.0016\left(\frac{1}{4}+\frac{1}{5}\right)}=.05 \pm .063=(-0.013,0 \tag{0.113}
\end{equation*}
$$

5) Problem 8.93
a) If σ is known, use the results for linear combinations,

$$
E\left(t^{\prime} Y\right)=t^{\prime} \mu \quad \text { and } \quad V\left(t^{\prime} Y\right)=t^{\prime} V t
$$

or Theorem 3.12 together with the fact that the sum of independent normals is also normal to determine that

$$
2 \bar{X}+\bar{Y}
$$

has a normal distribution with:

$$
\text { mean }=2 \mu_{1}+\mu_{2} \quad \text { and variance }=\sigma^{2}\left(\frac{4}{n}+\frac{3}{m}\right)
$$

so that a 95% confidence interval for $2 \mu_{1}+\mu_{2}$ is

$$
2 \bar{x}+\bar{y} \pm 1.96 \sigma \sqrt{\frac{4}{n}+\frac{3}{m}}
$$

If σ is not known, use the fact that

$$
\frac{1}{\sigma^{2}} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}
$$

has a Chi-square distribution with $n-1$ degrees of freedom, and similarly

$$
\frac{1}{3 \sigma^{2}} \sum_{i=1}^{m}\left(Y_{i}-\bar{Y}\right)^{2}
$$

has a Chi-square distribution with $m-1$ degrees of freedom, so their sum is a Chi-square variate with $n+m-2$ degrees of freedom. Then use Definition 7.2 with

$$
\hat{\sigma}^{2}=\frac{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}+\frac{1}{3} \sum_{i=1}^{m}\left(Y_{i}-\bar{Y}\right)^{2}}{n+m-2}
$$

to determine that

$$
T=\frac{(2 \bar{X}+\bar{Y})-\left(2 \mu_{1}+\mu_{2}\right)}{\hat{\sigma}^{2} \sqrt{\frac{4}{m}+\frac{3}{m}}}
$$

has a t distribution with $n+m-2$ degrees of freedom, so the 95% confidence interval is given by

$$
2 \bar{X}+\bar{Y} \pm t_{.025} \hat{\sigma} \sqrt{\frac{4}{m}+\frac{3}{m}}
$$

6) With $n=20$, the sample variance is $s^{2}=34854.4$. From Section 8.9, modifying to produce a one-sided confidence interval, we get:

$$
P\left[\sigma^{2} \leq \frac{(n-1) S^{2}}{\chi_{1-\alpha}^{2}}\right]=1-\alpha
$$

with $\chi_{.99,19}^{2}$ computed as $=\operatorname{CHIINV}(.99,19)$ with result 7.6327 . Since for positive values square roots preserve order, we can write

$$
P\left[\sigma^{2} \leq \sqrt{\frac{(n-1) S^{2}}{\chi_{1-\alpha}^{2}}}\right]=1-\alpha
$$

so the upper limit is

$$
\sqrt{\frac{(19)(34854.4)}{7.6327}}=294.55
$$

Since 150 hours is below the upper limit, we conclude that it is possible that the true population standard deviation might be 150 hours, or even less.

