Name:

1) Suppose $\left(Y_{1}, \ldots, Y_{5}\right)$ is a random sample of size 5 from a $N(\mu, 1)$ distribution, and that

$$
\hat{\mu_{1}}=Y_{1}+Y_{3}+Y_{5}-Y_{2}-Y_{4} \quad \text { and } \quad \hat{\mu_{2}}=\bar{Y}=\frac{1}{5} \sum_{i=1}^{5} Y_{i}
$$

Show that $\hat{\mu_{1}}$ and $\hat{\mu_{2}}$ are unbiased and find the efficiency of $\hat{\mu}_{1}$ relative to $\hat{\mu}_{2}$.

Note that both estimators are linear combinations of the sample values, with

$$
t_{1}^{\prime}=(1,-1,1,-1,1) \quad \text { and } \quad t_{2}^{\prime}=\left(\frac{1}{5}, \frac{1}{5}, \frac{1}{5}, \frac{1}{5}, \frac{1}{5}\right)
$$

Since

$$
\mu^{\prime}=(\mu, \mu, \mu, \mu, \mu) \quad \text { and } \quad V=I
$$

we get

$$
E\left(\hat{\mu}_{1}\right)=t_{1}^{\prime} \mu=3 \mu-2 \mu=\mu \quad \text { and } \quad E\left(\hat{\mu}_{2}\right)=t_{2}^{\prime} \mu=5 \frac{\mu}{5}=\mu
$$

so both are unbiased and

$$
V\left(\hat{\mu}_{1}\right)=t_{1}^{\prime} V t_{1}=t_{1}^{\prime} t_{1}=5 \quad \text { and } \quad V\left(\hat{\mu}_{2}\right)=t_{2}^{\prime} t_{2}=5 \frac{1}{5^{2}}=\frac{1}{5}
$$

and the relative efficiency is

$$
\operatorname{eff}\left(\hat{\mu}_{1}, \hat{\mu}_{2}\right)=\frac{\hat{\mu}_{1}}{\hat{\mu}_{2}}=\frac{1}{25}
$$

2) If Y has a a binomial distribution with n trials and probability of success p, show that Y / n is a consistent estimator for p.

From Table 8.1, recall that

$$
V(\hat{p})=V(Y / n)=\frac{p q}{n} \rightarrow 0 \quad \text { as } \quad n \rightarrow \infty
$$

So by Theorem 9.1 this estimator is consistent.
3) Suppose $Y_{1}, Y_{2}, \ldots, Y_{n}$ is a random sample and each Y_{i} has density function

$$
f(y)=\left\{\begin{array}{lll}
\theta y^{\theta-1} & \text { if } & 0 \leq y \leq 1 \\
0 & & \text { otherwise }
\end{array}\right.
$$

Show that \bar{Y} is a consistent estimator for $\theta /(\theta+1)$.
Comparing the density function of Y to a beta distribution, we see that Y has a beta density with $\alpha=\theta$ and $\beta=1$.
From the results in the back cover of the text,

$$
E(Y)=\frac{\alpha}{\alpha+\beta}=\frac{\theta}{\theta+1} \quad \text { and } \quad V(Y)=\frac{\theta}{\left.(\theta+2)(\theta+1)^{2}\right)}
$$

Using the results for expected values and variances of linear combinations, which are true regardless of the distributon of Y, we can say that:

$$
E(\bar{Y})=E(Y)=\frac{\theta}{\theta+1} \quad \text { and } \quad V(\bar{Y})=\frac{\theta}{n(\theta+2)(\theta+1)^{2}}
$$

Since \bar{Y} is unbiased and its variance approaches zero as the sample size becomes large, \bar{Y} is a consistent estimator for $E(Y)=\theta /(\theta+1)$.
4) Let $Y_{1}, Y_{2}, \ldots, Y_{n}$ be a random sample from a gamma distribution with parameters α and β. Show that \bar{Y} converges in probability to a constant and find that constant.

From our results for linear combinations of random variables, we know that

$$
E(\bar{Y})=E(Y)=\alpha \beta
$$

and

$$
V(\bar{Y})=\frac{1}{n} V(Y)
$$

Since \bar{Y} is an unbiased estimate and its variance tends to zero, \bar{Y} is a consistent estimator for $\alpha \beta$, so \bar{Y} converges in probability to $\alpha \beta$.
5) Suppose $Y_{1}, Y_{2}, \ldots, Y_{n}$ is a random sample from the probability density function

$$
f(y)=\left\{\begin{array}{lll}
\frac{2}{y^{2}} & \text { if } & y \geq 2 \\
0 & & \text { otherwise }
\end{array}\right.
$$

Determine whether or not the law of large numbers applies to \bar{Y}.

Note that

$$
E\left(Y^{2}\right)=\int_{2}^{\infty} y^{2} \cdot \frac{2}{y^{2}} d y
$$

Since the integral diverges, $E\left(Y^{2}\right)$ is infinite so the variance of Y does not exist and the law of large numbers does not apply.

