Name:

1) Suppose (Y_1, \ldots, Y_5) is a random sample of size 5 from a $N(\mu, 1)$ distribution, and that

$$\hat{\mu}_1 = Y_1 + Y_3 + Y_5 - Y_2 - Y_4$$
 and $\hat{\mu}_2 = \overline{Y} = \frac{1}{5} \sum_{i=1}^5 Y_i$

Show that $\hat{\mu}_1$ and $\hat{\mu}_2$ are unbiased and find the efficiency of $\hat{\mu}_1$ relative to $\hat{\mu}_2$.

2) If Y has a binomial distribution with n trials and probability of success p, show that Y/n is a consistent estimator for p.

3) Suppose Y_1, Y_2, \ldots, Y_n is a random sample and each Y_i has density function

$$f(y) = \begin{cases} \theta y^{\theta - 1} & \text{if } 0 \le y \le 1\\ 0 & otherwise \end{cases}$$

Show that \overline{Y} is a consistent estimator for $\theta/(\theta+1)$.

4) Let Y_1, Y_2, \ldots, Y_n be a random sample from a gamma distribution with parameters α and β . Show that \overline{Y} converges in probability to a constant and find that constant.

5) Suppose Y_1, Y_2, \ldots, Y_n is a random sample from the probability density function

$$f(y) = \begin{cases} \frac{2}{y^2} & \text{if } y \ge 2\\ 0 & otherwise \end{cases}$$

Determine whether or not the law of large numbers applies to \overline{Y} .