Name:

1) Suppose $\left(Y_{1}, \ldots, Y_{5}\right)$ is a random sample of size 5 from a $N(\mu, 1)$ distribution, and that

$$
\hat{\mu_{1}}=Y_{1}+Y_{3}+Y_{5}-Y_{2}-Y_{4} \quad \text { and } \quad \hat{\mu_{2}}=\bar{Y}=\frac{1}{5} \sum_{i=1}^{5} Y_{i}
$$

Show that $\hat{\mu_{1}}$ and $\hat{\mu_{2}}$ are unbiased and find the efficiency of $\hat{\mu}_{1}$ relative to $\hat{\mu}_{2}$.
2) If Y has a a binomial distribution with n trials and probability of success p, show that Y / n is a consistent estimator for p.
3) Suppose $Y_{1}, Y_{2}, \ldots, Y_{n}$ is a random sample and each Y_{i} has density function

$$
f(y)=\left\{\begin{array}{lll}
\theta y^{\theta-1} & \text { if } & 0 \leq y \leq 1 \\
0 & & \text { otherwise }
\end{array}\right.
$$

Show that \bar{Y} is a consistent estimator for $\theta /(\theta+1)$.
4) Let $Y_{1}, Y_{2}, \ldots, Y_{n}$ be a random sample from a gamma distribution with parameters α and β. Show that \bar{Y} converges in probability to a constant and find that constant.
5) Suppose $Y_{1}, Y_{2}, \ldots, Y_{n}$ is a random sample from the probability density function

$$
f(y)=\left\{\begin{array}{lll}
\frac{2}{y^{2}} & \text { if } & y \geq 2 \\
0 & & \text { otherwise }
\end{array}\right.
$$

Determine whether or not the law of large numbers applies to \bar{Y}.

