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Efficiency
We have identified unbiasedness as a desirable
characteristic of an estimator.

However, there may be a great many unbiased estimators
for a parameter.
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Efficiency
For example, if x1 and x2 are a random sample from a
N(µ, σ2) distribution, it is easy to verify that

h1(x1, x2) =
1

2
x1 +

1

2
x2

and

h2(x1, x2) =
1

3
x1 +

2

3
x2

are both unbiased estimators for µ (that is,
E(h1) = E(h2) = µ).
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Efficiency
For example, if x1 and x2 are a random sample from a
N(µ, σ2) distribution, it is easy to verify that

h1(x1, x2) =
1

2
x1 +

1

2
x2

and

h2(x1, x2) =
1

3
x1 +

2

3
x2

are both unbiased estimators for µ (that is,
E(h1) = E(h2) = µ).

In fact, there are an infinite number of functions of x1 and x2

that are unbiased estimators for µ.

How do we choose among them? Does it make any
difference which one we use?
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Efficiency
In matrix notation,

~x =

[

x1

x2

]

~µ =

[

µ1

µ2

]

V =

[

σ2 0

0 σ2

]
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Efficiency
In matrix notation,

~x =

[

x1

x2

]

~µ =

[

µ1

µ2

]

V =

[

σ2 0

0 σ2

]

Now

h1(x1, x2) = t′~x =
[

1

2

1

2

]

[

x1

x2

]
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Efficiency
In matrix notation,

~x =

[

x1

x2

]

~µ =

[

µ1

µ2

]

V =

[

σ2 0

0 σ2

]

Now

h1(x1, x2) = t′~x =
[

1

2

1

2

]

[

x1

x2

]

Consequently, the variance of h1(x1, x2) = µ̂1 is

Var(µ̂1) = t′V t =
σ2

4
+

σ2

4
=

σ2

2
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Efficiency
Second, h2(x1, x2) = µ̂2 is

h2(x1, x2) = t′~x =
[

1

3

2

3

]

[

x1

x2

]
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Efficiency
Second, h2(x1, x2) = µ̂2 is

h2(x1, x2) = t′~x =
[

1

3

2

3

]

[

x1

x2

]

Consequently, the variance of µ̂2 is

Var(µ̂2) = t′V t =
σ2

9
+

4σ2

9
=

5σ2

9

so

Var(µ̂1) =
σ2

2
< Var(µ̂2) =

5σ2

9
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Efficiency
So the estimator µ̂1 for µ is "better" than µ̂2 in the sense
that, while both are unbiased, µ̂1 has smaller variance than
µ̂2.

Of course, this raises the question of whether there is an
unbiased estimator with still smaller variance.
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Efficiency
So the estimator µ̂1 for µ is "better" than µ̂2 in the sense
that, while both are unbiased, µ̂1 has smaller variance than
µ̂2.

Of course, this raises the question of whether there is an
unbiased estimator with still smaller variance.

A famous and very powerful theorem known as the
Cramer-Rao Inequality answers this question, at least
within the class of unbiased estimators.

The Cramer-Rao inequality establishes the smallest
possible variance that an unbiased estimator can have.
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Cramer-Rao Inequality
Theorem : (Cramer-Rao Inequality) Let x1, . . . , xn be a
random sample from a population with continuous density
function fX(x; θ).

Suppose that fX(x; θ) has continuous first and second order
partial derivatives everywhere except possibly at a finite set
of points, and the support of f does not depend on θ.
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Cramer-Rao Inequality
Let

θ̂ = h(x1. . . . , xn)

be any unbiased estimator for θ.

Then

Var(θ̂) ≥

{

nE

[

(

∂ ln fX(x; θ)

∂θ

)2
]}

−1

=

{

−nE
[

∂2 ln fX(x; θ)

∂θ2

]}−1
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Cramer-Rao Inequality
In the application of this theorem, we are interested in
finding the lower bound for the variance of the unbiased
estimator θ̂.
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Cramer-Rao Inequality
In the application of this theorem, we are interested in
finding the lower bound for the variance of the unbiased
estimator θ̂.

The theorem gives us two equivalent ways to do this: we
can either evaluate

{

nE

[

(

∂ ln fX(x; θ)

∂θ

)2
]}

−1

or
{

−nE
[

∂2 ln fX(x; θ)

∂θ2

]}−1
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Efficiency
Let x1, . . . , xn be a random sample from a population with
continuous pdf fX(x; θ), and let

θ̂ = h(x1, . . . , xn)

be an unbiased estimator for θ.
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Efficiency
Let x1, . . . , xn be a random sample from a population with
continuous pdf fX(x; θ), and let

θ̂ = h(x1, . . . , xn)

be an unbiased estimator for θ.

Definition : An unbiased estimator θ̂ for θ is called efficient
if Var(θ̂) is equal to the Cramer-Rao lower bound
associated with f(X; θ).

The efficiency of θ̂ is defined to be the ratio of the
Cramer-Rao lower bound associated with f(x; θ) to the
variance of θ̂.
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Best Estimators
Let x1, . . . , xn be a random sample from a population with
continuous pdf fX(x; θ), and let

θ̂ = h(x1, . . . , xn)

be an unbiased estimator for θ.

Let Θ be the set of all unbiased estimators for θ.
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Best Estimators
Let x1, . . . , xn be a random sample from a population with
continuous pdf fX(x; θ), and let

θ̂ = h(x1, . . . , xn)

be an unbiased estimator for θ.

Let Θ be the set of all unbiased estimators for θ.

Definition : An unbiased estimator θ̂∗ ∈ Θ for θ is called a
best or minimum variance estimator if

Var(θ̂∗) ≤ Var(θ̂) for all θ̂ ∈ Θ
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Best Estimators

Note that an unbiased estimator θ̂ with variance equal to
the Cramer-Rao lower bound is automatically a best or
minimum variance estimator.
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Best Estimators

Note that an unbiased estimator θ̂ with variance equal to
the Cramer-Rao lower bound is automatically a best or
minimum variance estimator.

However, in some cases no unbiased estimators achieve
the Cramer-Rao lower bound.

In these cases it is possible for an estimator to be best or
minimum variance even though it has a variance greater
than the Cramer-Rao lower bound.
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