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Bernoulli Trials

Definition : A Bernoulli trial is an experiment which:

1) Has exactly two outcomes, usually called success and failure

and

2) Has a fixed probabilities p associated with the outcome "success"
and q = 1 − p associated with the outcome "failure".

The Bernoulli Distribution – p.2/11



Bernoulli Trials

Definition : A Bernoulli trial is an experiment which:

1) Has exactly two outcomes, usually called success and failure

and

2) Has a fixed probabilities p associated with the outcome "success"
and q = 1 − p associated with the outcome "failure".

The sample space for a Bernoulli trial experiment contains two
elements:

S = {success, failure}
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Bernoulli Trials

Recall that an event is any subset of a sample space.

In general, a finite sample space with n elements has 2n possible
subsets (Including S, each possible outcome, and the empty set ∅), so
in the case of a Bernoulli trial there are four possible events.

Recall that a probability function is a real-valued function whose
domain is the set of events associated with a sample space.
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Bernoulli Trials

Recall that an event is any subset of a sample space.

In general, a finite sample space with n elements has 2n possible
subsets (Including S, each possible outcome, and the empty set ∅), so
in the case of a Bernoulli trial there are four possible events.

Recall that a probability function is a real-valued function whose
domain is the set of events associated with a sample space.

The following table lists the four possible events and defines a
probability function by associating a real number with each event:

Event Description Probability

success ∪ failure either success or failure occurs 1

success the outcome is success p

failure the outcome is failure q = 1 − p

∅ neither success nor failure occurs 0
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Bernoulli Trials

Event Description Probability

success ∪ failure either success or failure occurs 1

success the outcome is success p

failure the outcome is failure q = 1 − p

∅ neither success nor failure occurs 0

You should convince yourself that, as long as 0 ≤ p ≤ 1, the probability
function defined in tabular form above satisfies the first three
Kolmogorov axioms.
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Bernoulli Trials

Event Description Probability

success ∪ failure either success or failure occurs 1

success the outcome is success p

failure the outcome is failure q = 1 − p

∅ neither success nor failure occurs 0

You should convince yourself that, as long as 0 ≤ p ≤ 1, the probability
function defined in tabular form above satisfies the first three
Kolmogorov axioms.

The fourth axiom is not required in this case because the sample
space is finite.
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Bernoulli Trials

Usually a random variable X is associated with a Bernoulli trial by the
following definition.

X =

{

0 if the outcome is "failure"
1 if the outcome is "success"
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Bernoulli Trials

Usually a random variable X is associated with a Bernoulli trial by the
following definition.

X =

{

0 if the outcome is "failure"
1 if the outcome is "success"

Recall that a random variable is a real-valued function whose domain
is a sample space, so the above definition qualifies since it is a
real-valued function defined on the sample space of a Bernoulli trial,

S = {success, failure}
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Bernoulli Trials

Finally, we will define a probability density function or pdf for the
random variable X defined by:

X =

{

0 if the outcome is "failure"
1 if the outcome is "success"
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Bernoulli Trials

Finally, we will define a probability density function or pdf for the
random variable X defined by:

X =

{

0 if the outcome is "failure"
1 if the outcome is "success"

A discrete probability density function pX(k) maps the values of a
discrete random variable X into [0, 1] according to the rule

pX(k) = P ({s ∈ S |X(s) = k})
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Bernoulli Trials

It is common to simplify the expression

pX(k) = P ({s ∈ S |X(s) = k})

by removing the explicit references to the outcome s and sample space
S.

The resulting simplified definition for the probability density function is:

pX(k) = P (X = k)
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Bernoulli Trials

It is common to simplify the expression

pX(k) = P ({s ∈ S |X(s) = k})

by removing the explicit references to the outcome s and sample space
S.

The resulting simplified definition for the probability density function is:

pX(k) = P (X = k)

In the case of a Bernoulli trial, the pdf is usually defined as

pX(k) =

{

p if k = 1

q = 1 − p if k = 0
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Related Probability Distributions

A number of important probability distributions arise when sequences
of independent Bernoulli trials with a constant probability of success p

are performed.

The most important is the result of performing exactly n Bernoulli trials,
each independent of the others and having the same probability of
success p.
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Related Probability Distributions

A number of important probability distributions arise when sequences
of independent Bernoulli trials with a constant probability of success p

are performed.

The most important is the result of performing exactly n Bernoulli trials,
each independent of the others and having the same probability of
success p.

If Xi is the random variable associated with the ith Bernoulli trial, for
1 ≤ i ≤ n, then we define a binomial random variable Y to be

Y =
n

∑

i=1

Xi
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Related Probability Distributions

A number of important probability distributions arise when sequences
of independent Bernoulli trials with a constant probability of success p

are performed.

The most important is the result of performing exactly n Bernoulli trials,
each independent of the others and having the same probability of
success p.

If Xi is the random variable associated with the ith Bernoulli trial, for
1 ≤ i ≤ n, then we define a binomial random variable Y to be

Y =
n

∑

i=1

Xi

Recalling that Xi = 1 if the ith Bernoulli trial results in success, we
interpret Y as the number of successes in n independent Bernoulli
trials with probability of success equal to p.
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Related Probability Distributions

We will see that the probability density function of the binomial random
variable Y obtained by adding the results Xi of n independent
Bernoulli trials with probability of success p is:

pY (k) =

(

n

k

)

pk(1 − p)n−k, k = 0, 1, . . . , n
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Related Probability Distributions

Another related distribution arises from the following experiment:

Independent Bernoulli trials each having probability of success p are
performed until the first success occurs. number of important
probability distributions arise when sequences of independent

A random variable Y is defined with the following pdf:

pY (k) = P (first success occurs on trial k) , k = 1, 2, 3, . . .

The distribution of Y in this case is called the geometric distribution
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Related Probability Distributions

Another related distribution arises from the following experiment:

Independent Bernoulli trials each having probability of success p are
performed until the first success occurs. number of important
probability distributions arise when sequences of independent

A random variable Y is defined with the following pdf:

pY (k) = P (first success occurs on trial k) , k = 1, 2, 3, . . .

The distribution of Y in this case is called the geometric distribution

We will see that the probability density function for the geometric
distribution is:

pY (k) = (1 − p)k−1 · p, k = 1, 2, . . .
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Related Probability Distributions

Suppose instead we conduct independent Bernoulli trials with
probability of success p until we obtain r successes, for some integer
r > 1.

Define a random variable Y with the following pdf:

pY (k) = P
(

the rth success occurs on trial k
)

, k = r, r + 1, . . .

The distribution of Y in this case is called the negative binomial
distribution
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Related Probability Distributions

Suppose instead we conduct independent Bernoulli trials with
probability of success p until we obtain r successes, for some integer
r > 1.

Define a random variable Y with the following pdf:

pY (k) = P
(

the rth success occurs on trial k
)

, k = r, r + 1, . . .

The distribution of Y in this case is called the negative binomial
distribution

We will see that the probability density function for the negative
binomial distribution is:

pY (k) =

(

k − 1

r − 1

)

pr(1 − p)k−r, k = r, r + 1, . . .
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