The Bernoulli Distribution

Gene Quinn

Bernoulli Trials

Definition: A Bernoulli trial is an experiment which:

1) Has exactly two outcomes, usually called success and failure and
2) Has a fixed probabilities p associated with the outcome "success" and $q=1-p$ associated with the outcome "failure".

Bernoulli Trials

Definition: A Bernoulli trial is an experiment which:

1) Has exactly two outcomes, usually called success and failure and
2) Has a fixed probabilities p associated with the outcome "success" and $q=1-p$ associated with the outcome "failure".

The sample space for a Bernoulli trial experiment contains two elements:

$$
S=\{\text { success, failure }\}
$$

Bernoulli Trials

Recall that an event is any subset of a sample space.
In general, a finite sample space with n elements has 2^{n} possible subsets (Including S, each possible outcome, and the empty set \emptyset), so in the case of a Bernoulli trial there are four possible events.

Recall that a probability function is a real-valued function whose domain is the set of events associated with a sample space.

Bernoulli Trials

Recall that an event is any subset of a sample space.
In general, a finite sample space with n elements has 2^{n} possible subsets (Including S, each possible outcome, and the empty set \emptyset), so in the case of a Bernoulli trial there are four possible events.

Recall that a probability function is a real-valued function whose domain is the set of events associated with a sample space.

The following table lists the four possible events and defines a probability function by associating a real number with each event:

Event	Description	Probability
success \cup failure	either success or failure occurs	1
success	the outcome is success	p
failure	the outcome is failure	$q=1-p$
\emptyset	neither success nor failure occurs	0

Bernoulli Trials

Event	Description	Probability
success \cup failure	either success or failure occurs	1
success	the outcome is success	p
failure	the outcome is failure	$q=1-p$
\emptyset	neither success nor failure occurs	0

You should convince yourself that, as long as $0 \leq p \leq 1$, the probability function defined in tabular form above satisfies the first three Kolmogorov axioms.

Bernoulli Trials

Event	Description	Probability
success \cup failure	either success or failure occurs	1
success	the outcome is success	p
failure	the outcome is failure	$q=1-p$
\emptyset	neither success nor failure occurs	0

You should convince yourself that, as long as $0 \leq p \leq 1$, the probability function defined in tabular form above satisfies the first three Kolmogorov axioms.

The fourth axiom is not required in this case because the sample space is finite.

Bernoulli Trials

Usually a random variable X is associated with a Bernoulli trial by the following definition.

$$
X= \begin{cases}0 & \text { if the outcome is "failure" } \\ 1 & \text { if the outcome is "success" }\end{cases}
$$

Bernoulli Trials

Usually a random variable X is associated with a Bernoulli trial by the following definition.

$$
X= \begin{cases}0 & \text { if the outcome is "failure" } \\ 1 & \text { if the outcome is "success" }\end{cases}
$$

Recall that a random variable is a real-valued function whose domain is a sample space, so the above definition qualifies since it is a real-valued function defined on the sample space of a Bernoulli trial,

$$
S=\{\text { success, failure }\}
$$

Bernoulli Trials

Finally, we will define a probability density function or $p d f$ for the random variable X defined by:

$$
X= \begin{cases}0 & \text { if the outcome is "failure" } \\ 1 & \text { if the outcome is "success" }\end{cases}
$$

Bernoulli Trials

Finally, we will define a probability density function or $p d f$ for the random variable X defined by:

$$
X= \begin{cases}0 & \text { if the outcome is "failure" } \\ 1 & \text { if the outcome is "success" }\end{cases}
$$

A discrete probability density function $p_{X}(k)$ maps the values of a discrete random variable X into $[0,1]$ according to the rule

$$
p_{X}(k)=P(\{s \in S \mid X(s)=k\})
$$

Bernoulli Trials

It is common to simplify the expression

$$
p_{X}(k)=P(\{s \in S \mid X(s)=k\})
$$

by removing the explicit references to the outcome s and sample space S.

The resulting simplified definition for the probability density function is:

$$
p_{X}(k)=P(X=k)
$$

Bernoulli Trials

It is common to simplify the expression

$$
p_{X}(k)=P(\{s \in S \mid X(s)=k\})
$$

by removing the explicit references to the outcome s and sample space S.

The resulting simplified definition for the probability density function is:

$$
p_{X}(k)=P(X=k)
$$

In the case of a Bernoulli trial, the pdf is usually defined as

$$
p_{X}(k)=\left\{\begin{array}{ccc}
p & \text { if } & k=1 \\
q=1-p & \text { if } & k=0
\end{array}\right.
$$

Related Probability Distributions

A number of important probability distributions arise when sequences of independent Bernoulli trials with a constant probability of success p are performed.
The most important is the result of performing exactly n Bernoulli trials, each independent of the others and having the same probability of success p.

Related Probability Distributions

A number of important probability distributions arise when sequences of independent Bernoulli trials with a constant probability of success p are performed.
The most important is the result of performing exactly n Bernoulli trials, each independent of the others and having the same probability of success p.

If X_{i} is the random variable associated with the $i^{t h}$ Bernoulli trial, for $1 \leq i \leq n$, then we define a binomial random variable Y to be

$$
Y=\sum_{i=1}^{n} X_{i}
$$

Related Probability Distributions

A number of important probability distributions arise when sequences of independent Bernoulli trials with a constant probability of success p are performed.
The most important is the result of performing exactly n Bernoulli trials, each independent of the others and having the same probability of success p.

If X_{i} is the random variable associated with the $i^{\text {th }}$ Bernoulli trial, for $1 \leq i \leq n$, then we define a binomial random variable Y to be

$$
Y=\sum_{i=1}^{n} X_{i}
$$

Recalling that $X_{i}=1$ if the $i^{\text {th }}$ Bernoulli trial results in success, we interpret Y as the number of successes in n independent Bernoulli trials with probability of success equal to p.

Related Probability Distributions

We will see that the probability density function of the binomial random variable Y obtained by adding the results X_{i} of n independent Bernoulli trials with probability of success p is:

$$
p_{Y}(k)=\binom{n}{k} p^{k}(1-p)^{n-k}, \quad k=0,1, \ldots, n
$$

Related Probability Distributions

Another related distribution arises from the following experiment:
Independent Bernoulli trials each having probability of success p are performed until the first success occurs. number of important probability distributions arise when sequences of independent

A random variable Y is defined with the following pdf:

$$
p_{Y}(k)=P(\text { first success occurs on trial } k), \quad k=1,2,3, \ldots
$$

The distribution of Y in this case is called the geometric distribution

Related Probability Distributions

Another related distribution arises from the following experiment:
Independent Bernoulli trials each having probability of success p are performed until the first success occurs. number of important probability distributions arise when sequences of independent

A random variable Y is defined with the following pdf:

$$
p_{Y}(k)=P(\text { first success occurs on trial } k), \quad k=1,2,3, \ldots
$$

The distribution of Y in this case is called the geometric distribution
We will see that the probability density function for the geometric distribution is:

$$
p_{Y}(k)=(1-p)^{k-1} \cdot p, \quad k=1,2, \ldots
$$

Related Probability Distributions

Suppose instead we conduct independent Bernoulli trials with probability of success p until we obtain r successes, for some integer $r>1$.

Define a random variable Y with the following pdf:

$$
p_{Y}(k)=P\left(\text { the } r^{t h} \text { success occurs on trial } k\right), \quad k=r, r+1, \ldots
$$

The distribution of Y in this case is called the negative binomial distribution

Related Probability Distributions

Suppose instead we conduct independent Bernoulli trials with probability of success p until we obtain r successes, for some integer $r>1$.

Define a random variable Y with the following pdf:

$$
p_{Y}(k)=P\left(\text { the } r^{t h} \text { success occurs on trial } k\right), \quad k=r, r+1, \ldots
$$

The distribution of Y in this case is called the negative binomial distribution

We will see that the probability density function for the negative binomial distribution is:

$$
p_{Y}(k)=\binom{k-1}{r-1} p^{r}(1-p)^{k-r}, \quad k=r, r+1, \ldots
$$

