MA396 Takehome Exam 1

Name:

(Note: if you use a computer algebra system, please include the output with your exam)

1) If two continuous random variables X and Y have joint density function $f_{X Y}(x, y)$, define the covariance of X and Y as

$$
\sigma_{x y}=\operatorname{Cov}(X, Y)=E(X Y)-E(X) \cdot E(Y)
$$

Show that if X and Y are independent random variables with expectations $\mathrm{E}(X)=\bar{x}$ and $\mathrm{E}(Y)=\bar{y}$, then $\sigma_{x y}=0$.
2) A distribution is said to be memoryless if

$$
P(Y>s+t \mid Y>t)=P(Y>s)
$$

Show that a random variable Y with the exponential distribution

$$
f_{Y}(y)=\lambda e^{-\lambda y}, \quad y \in[0, \infty)
$$

has the memoryless property.
3) Suppose Y is a random variable with $\mathrm{E}(Y)=\mu$ and $\operatorname{Var}(Y)=\sigma^{2}$, and that $\mathrm{E}\left(Y^{3}\right)$ exists.
a) Show that

$$
\mathrm{E}(Y-\mu)^{2}=\mathrm{E}\left(Y^{2}\right)-\mu^{2}
$$

b) Show that

$$
\mathrm{E}(Y-\mu)^{3}=\mathrm{E}\left(Y^{3}\right)-3 \mu \sigma^{2}-\mu^{3}
$$

4) Suppose $\vec{X}=\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ is a vector or n random variables with joint density

$$
f_{X}\left(x_{1}, x_{2}, \ldots, x_{n}\right), \quad x_{i} \in \mathbb{R}
$$

Let $\vec{X}_{k}=\left(X_{1}, X_{2}, \ldots, X_{k}\right)$ represents the first k components of \vec{X}. Then the (joint) marginal density of \vec{X}_{k} is:

$$
g_{X_{k}}\left(x_{1}, x_{2}, \ldots, x_{k}\right)=\int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} f_{X}\left(x_{1}, x_{2}, \ldots, x_{n}\right) d x_{k+1} \cdots d x_{n}
$$

In general, given a jointly distributed vector of n random variables \vec{X}, there will be a joint marginal density for every nonempty proper subset of $\left\{X_{1}, X_{2}, \ldots, X_{n}\right\}$. This density function will be defined by an integral similar to the one above.

$$
\begin{aligned}
& \text { If } \vec{X}=\left(X_{1}, X_{2}, X_{3}\right) \text { has joint density function } \\
& f_{X}\left(x_{1}, x_{2}, x_{3}\right)=\frac{1}{9}\left(x_{1}+x_{1}^{2} x_{2}\right) e^{-x_{3}}, \quad x_{1} \in[0,3], x_{2} \in[0,1], x_{3} \in[0, \infty)
\end{aligned}
$$

find the six possible marginal density functions.
5) Suppose $\vec{X}=\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ is a vector or n random variables with joint density

$$
f_{X}\left(x_{1}, x_{2}, \ldots, x_{n}\right), \quad x_{i} \in \mathbb{R}
$$

Let $\vec{X}_{k}=\left(X_{1}, X_{2}, \ldots, X_{k}\right)$ represent the first k components of \vec{X} and \vec{X}_{n-k} represent the last $n-k$ components of \vec{X}. Then the conditional density of \vec{X}_{k} given \vec{X}_{n-k} is:

$$
f\left(x_{1}, x_{2}, \ldots, x_{k} \mid x_{k+1}, \ldots, x_{n}\right)=\frac{f_{X}\left(x_{1}, x_{2}, \ldots, x_{n}\right)}{g_{X_{n-k}}\left(x_{k+1}, x_{k+2}, \ldots, x_{n}\right)}
$$

If $\vec{X}=\left(X_{1}, X_{2}, X_{3}\right)$ has joint density function given in problem 4), find the six possible conditional density functions.
6) For the joint density function in problem 4), find the variancecovariance matrix of \vec{X}.
7) For the joint density function in problem 4), find the variancecovariance matrix of the random vector $\vec{Y}=\left\{Y_{1}, Y_{2}\right\}$ defined by:

$$
\begin{aligned}
& Y_{1}=X_{1}+X_{2}-2 X_{3} \\
& Y_{2}=X_{1}-X_{2}+X_{3}
\end{aligned}
$$

8) Suppose a random variable Y has density function

$$
f_{Y}(y)=\frac{k}{1+y^{2}}, \quad y \in \mathbb{R}
$$

a) Find the value of k.
b) Show that $\mathrm{E}(Y)$ does not exist.
9) Suppose $\vec{X}=\left(X_{1}, X_{2}, X_{3}\right)$ is a vector of random variables with joint density function

$$
f\left(x_{1}, x_{2}, x_{3}\right)=\exp \left(-x_{1}-x_{2}-x_{3}\right), \quad x_{1}, x_{2}, x_{3} \in[0, \infty)
$$

Define the multivariate moment-generating function $M_{X}\left(t_{1}, t_{2}, t_{3}\right)$ as

$$
M_{X}\left(t_{1}, t_{2}, t_{3}\right)=\mathrm{E}\left(\exp \left(t_{1} x_{1}+t_{2} x_{2}+t_{3} x_{3}\right)\right.
$$

Show that

$$
M_{X}\left(t_{1}, t_{2}, t_{3}\right)=-\frac{1}{\left(t_{1}-1\right)\left(t_{2}-1\right)\left(t_{3}-1\right)}
$$

10) The density function for the multivariate normal distribution is:

$$
f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\frac{1}{\sqrt{(2 \pi)^{n}|V|}} \exp \left(-\frac{(x-\mu)^{\prime} V^{-1}(x-\mu)}{2}\right)
$$

Where:

$$
\mu=\left(\mu_{1}, \mu_{2}, \ldots, \mu_{n}\right)
$$

is a vector of means, V is an $n \times n$ variance-covariance matrix, and $|V|$ is the matrix determinant of V.

When $n=3$,

$$
X=\left[\begin{array}{l}
X_{1} \\
X_{2} \\
X_{3}
\end{array}\right] \text { is a vector of random variables }
$$

$$
\begin{aligned}
\mu & =\left[\begin{array}{l}
\mu_{1} \\
\mu_{2} \\
\mu_{3}
\end{array}\right] \text { is a vector of expected values or means } \\
x-\mu & =\left[\begin{array}{l}
x_{1}-\mu_{1} \\
x_{2}-\mu_{2} \\
x_{3}-\mu_{3}
\end{array}\right] \text { is a vector of deviations from means }
\end{aligned}
$$

and the variance-covariance matrix is

$$
V=\left[\begin{array}{ccc}
\sigma_{1}^{2} & \sigma_{12} & \sigma_{13} \\
\sigma_{12} & \sigma_{2}^{2} & \sigma_{23} \\
\sigma_{13} & \sigma_{23} & \sigma_{3}^{2}
\end{array}\right]
$$

The moment-generating function of the multivariate normal distribution is

$$
M_{X}(t)=\exp \left(t^{\prime} x+t^{\prime} V t\right)
$$

where $t=\left(t_{1}, t_{2}, \ldots, t_{n}\right)$ is a vector of parameters. When $n=3$,

$$
t=\left[\begin{array}{l}
t_{1} \\
t_{2} \\
t_{3}
\end{array}\right]
$$

The moment-generating function of the (joint) marginal distribution of X_{1} and X_{2} is obtained by setting $t_{3}=0$ in the multivariate normal moment-generating function with $n=3$.
a) Find the moment-generating function of the (joint) marginal distribution of X_{1} and X_{2}
b) Use the moment-generating function to establish that the marginal distribution is multivariate normal with $n=2$.
c) Find the vector of means μ and the variance-covariance matrix V of this distribution.

