MA396 Assignment 1

Name:

Background: The density function of the standard normal distribution is:

$$
f(x)=\frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2}, \quad x \in(-\infty, \infty)
$$

There is a spreadsheet linked to the assignment page that contains the following:

Sheet 1 (Standard Normal Distribution)

- 100 observations X_{i} from a Uniform density (Cells $A 2$: A101)
- 100 observations z_{i} from a standard normal distribution (Cells B2 : B101)
- An interval for z (Lower limit in Cell $C 2$, upper limit in Cell $D 2)$ (you can change these values)
- 100 indicator variables: 1 if Lower limit $\leq z_{i} \leq$ Upper limit, else 0
- The sum of the indicator variables (Cell F2)
- The proportion of the indicator variables that are 1 (Cell G2)
- The theoretical probability that a standard normal variable falls in the interval $[L L, U L]$ (Cell H2):

$$
P(\text { Lower limit } \leq X \leq \text { Upper limit })=\int_{L L}^{U L} \frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2} d x
$$

Sheet 2 (Binomial Distribution)

- Number of trials n for the binomial distribution (Cell D2)
- Probability of success p on each trial (Cell E2)
- Number of Successes $k, k=0,1, \ldots n($ Cells $A(k+2))$
- Probability of exactly k successes, $k=0,1, \ldots, 10$ (Cell $B(2+$ k))
- Probability of k or fewer successes, $k=0,1, \ldots, 10$ (Cell $C(2+$ k))
- 10 uniform random variates for simulating Bernoulli trials (Cells A15 - A24)
- 10 simulated Bernoulli trial outcomes (Cells B15 - B24)
- Number of successes in 10 simulated Bernoulli trials (Cell D14)

The probability of exactly k successes in n trials when the probability of success on each trial is p and $q=1-p$ is given by:

$$
P(k \text { successes in } n \text { trials })=\binom{n}{k} p^{k} q^{n-k}, \quad k=0,1, \ldots, n
$$

Recall that:

$$
\binom{n}{k}=\frac{n!}{k!(n-k)!}
$$

The probability of k or fewer successes, also known as the cumulative probability, is:

$$
P(k \text { or fewer successes in } n \text { trials })=\sum_{i=0}^{k}\binom{n}{i} p^{i} q^{n-i}
$$

Use the spreadsheet attached to the assignment page to answer the following questions (Note that changing any cell results in a new sample of 100 observations. Each pair of questions will be answered from a different sample).

1) What is the probability that a single observation from a standard normal population falls in the interval $[-1,1]$?
2) What proportion of your sample of 100 actually fell in this range?
3) What is the probability that a single observation from a standard normal population falls in the interval $[-2,2]$?
4) What proportion of your sample of 100 actually fell in this range?
5) What is the probability that a single observation from a standard normal population falls in the interval $[-3,3]$?
6) What proportion of your sample of 100 actually fell in this range?
7) What is the probability that a single observation from a standard normal population falls in the interval $[-10,0]$?
8) What proportion of your sample of 100 actually fell in this range?
9) With the lower limit set at -10 , experiment with the upper limit to find the value that make the theoretical probability that an observation falls in this interval 0.95 . What is this value?
10) Set the low limit equal to the upper limit with a minus sign. Adjust the two values (keeping them equal in absolute value) to find the limits that make the theoretical probability that an observation falls in this interval 0.50 . What is this value?
11) What is the probability that 10 tosses of a fair coin results in exactly 5 heads?
12) How many heads were obtained in the 10 simulated tosses (Cell D14)?
13) Suppose a baseball player has a .250 average. What is the probability of the player getting more than 3 hits in 10 at bats? More than 4 hits?
14) How many 'hits' (successes) were obtained in 10 simulated at bats (Cell D14)?
15) A certain drug cures a disease in 75% of the patients suffering from the disease who receive it. If 10 patients are given the drug, what is the probability that 6 or fewer are cured?
