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Cartesian Product

Suppose A and B are sets.

We define the CARTESIAN PRODUCT of A and B to be the set of all
ordered pairs (a, b) with a being an element of A and b being an
element of B.

The cartesian product of A and B is denoted by A × B.
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Cartesian Product

Suppose A and B are sets.

We define the CARTESIAN PRODUCT of A and B to be the set of all
ordered pairs (a, b) with a being an element of A and b being an
element of B.

The cartesian product of A and B is denoted by A × B.

In set builder notation,

A × B = {(a, b) : a ∈ A and b ∈ B}
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Cartesian Product Example

Suppose A = {1, 2, 3} and B = {4, 5}.

The cartesian product A × B is:

A × B = {(1, 4), (1, 5), (2, 4), (2, 5), (3, 4), (3, 5)}
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Functions

Suppose A and B are sets.

We can use the cartesian product of A and B to define a function f

with domain A that takes values in B.

This situation is usually denoted by:

f : A 7→ B
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Functions

Suppose A and B are sets.

We can use the cartesian product of A and B to define a function f

with domain A that takes values in B.

This situation is usually denoted by:

f : A 7→ B

Recall that the elements of A × B are ordered pairs (a, b) with a ∈ A

and b ∈ B.

Recall also that a function can be defined by a set of ordered pairs,

S ⊂ A × B = {(a, b), (c, d), (e, f), . . .}

We require only that every element of A, the domain, appears as
the first element of exactly one ordered pair in S.
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Functions

Any subset S ⊂ A × B having this property defines, in tabular form, a
function

f : A 7→ B

with domain A that takes its values in B.
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Functions

Any subset S ⊂ A × B having this property defines, in tabular form, a
function

f : A 7→ B

with domain A that takes its values in B.

Note that we do not require every element of B to appear in an ordered
pair in S, so B may not be the range of the function f .

However, B will always contain the range of f .
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Functions

Any subset S ⊂ A × B having this property defines, in tabular form, a
function

f : A 7→ B

with domain A that takes its values in B.

Note that we do not require every element of B to appear in an ordered
pair in S, so B may not be the range of the function f .

However, B will always contain the range of f .

Suppose a function f : A 7→ B is defined by a subset S of A × B. The
range of f , Rf , is:

Rf = {b ∈ B : (a, b) ∈ S for some a ∈ A}

Every element of Rf belongs to B, so

Rf ⊆ B
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One to One Correspondence

A function
f : A 7→ B

is called a one to one correspondence if:

• The range of f is B

• f is a 1:1 function
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One to One Correspondence

A function
f : A 7→ B

is called a one to one correspondence if:

• The range of f is B

• f is a 1:1 function

The first condition says the for any b ∈ B, we can find an a ∈ A such
that

f(a) = b

or, equivalently, if f is defined in tabular form by S ⊂ A × B, for every
b ∈ B there is some a ∈ A such that

(a, b) ∈ S
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One to One Correspondence

The second condition means that no b ∈ B appears in more than one
(a, b) ∈ S.

In other words, no two elements of the domain A are mapped to the
same element of the range B.
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One to One Correspondence

The second condition means that no b ∈ B appears in more than one
(a, b) ∈ S.

In other words, no two elements of the domain A are mapped to the
same element of the range B.

Actually, this is the same concept we encountered in calculus when we
discussed one to one functions.
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One to One Correspondence and Cardinality

The idea of a one to one correspondence provides a way to determine
the cardinality of sets.
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One to One Correspondence and Cardinality

The idea of a one to one correspondence provides a way to determine
the cardinality of sets.

In the case of finite sets, it’s easy to visualize that the existence of a
one to one correspondence between two sets guarantees that they
have the same number of elements.

Let’s consider two sets, A = {a, b, c, d} and B = {1, 2, 3, 4}.

The cartesian product A × B contains 16 ordered pairs,

(a, 1) (a, 2) (a, 3) (a, 4) (b, 1) (b, 2) (b, 3) (b, 4)

(c, 1) (c, 2) (c, 3) (c, 4) (d, 1) (d, 2) (d, 3) (d, 4)
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One to One Correspondence and Cardinality

We can identify the 16 ordered pairs in A × B,

A×B =

{

(a, 1) (a, 2) (a, 3) (a, 4) (b, 1) (b, 2) (b, 3) (b, 4)

(c, 1) (c, 2) (c, 3) (c, 4) (d, 1) (d, 2) (d, 3) (d, 4)

}

with the 16 cells of a 4 × 4 table,

1 2 3 4

a

b

c

d
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One to One Correspondence and Cardinality

As we add elements of A × B to S, the subset that defines f , we can
fill in the table:

S = {(a, 1)}

1 2 3 4

a X

b

c

d
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One to One Correspondence and Cardinality

As we add elements of A × B to S, the subset that defines f , we can
fill in the table:

S = {(a, 1), (b, 3)}

1 2 3 4

a X

b X

c

d
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One to One Correspondence and Cardinality

As we add elements of A × B to S, the subset that defines f , we can
fill in the table:

S = {(a, 1), (b, 3), (c, 4)}

1 2 3 4

a X

b X

c X

d
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One to One Correspondence and Cardinality

As we add elements of A × B to S, the subset that defines f , we can
fill in the table:

S = {(a, 1), (b, 3), (c, 4), (d, 2)}

1 2 3 4

a X

b X

c X

d X
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One to One Correspondence and Cardinality

As we add elements of A × B to S, the subset that defines f , we can
fill in the table:

S = {(a, 1), (b, 3), (c, 4), (d, 2)}

1 2 3 4

a X

b X

c X

d X

The function f : A 7→ B defined in tabular form by S is in fact a one to
one correspondence.

This will be the case any time the table has exactly one entry in each
row and in each column.
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One to One Correspondence and Cardinality

A bit of thought should convince you of the following:

It is impossible to fill in the table with exactly one entry in each row and
column if the number of elements in A and B are not the same:

1 2 3 4

a X ?

b X ?

c X ?
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One to One Correspondence and Cardinality

A bit of thought should convince you of the following:

It is impossible to fill in the table with exactly one entry in each row and
column if the number of elements in A and B are not the same:

1 2 3 4

a X ?

b X ?

c X ?

1 2 3

a X

b X

c X

d ? ? ?
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One to One Correspondence and Cardinality

So, at least for finite sets A and B, the following are equivalent:
• A and B have the same cardinality: N(A) = N(B)

• There exists a function f : A 7→ B that is a one to one
correspondence
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One to One Correspondence and Cardinality

So, at least for finite sets A and B, the following are equivalent:
• A and B have the same cardinality: N(A) = N(B)

• There exists a function f : A 7→ B that is a one to one
correspondence

It was George Cantor who extended this idea to infinite sets.
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Cardinality - Infinite Sets

Cantor reasoned that, even for infinite sets, the existence of a one to
one correspondence between two sets meant that they had the same
cardinality.
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Cardinality - Infinite Sets

Cantor reasoned that, even for infinite sets, the existence of a one to
one correspondence between two sets meant that they had the same
cardinality.

For example, it is easy to establish a one to one correspondence
between the set

S = {2, 4, 6, 8, . . .}

and the set of natural numbers

N = {1, 2, 3, 4, 5, . . .}

by designating f(x) = 2x for each element of N.

MA395 Supplemental Notes on Set Theory – p.16/24



Cardinality - Infinite Sets

The existence of a one to one correspondence between the set

S = {2, 4, 6, 8, . . .}

and the set of natural numbers

N = {1, 2, 3, 4, 5, . . .}

implies that S and N have the same cardinality (i.e., the same number
of elements):

N(S) = N(N)
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Cardinality - Infinite Sets

It took some time for Cantor’s ideas to be accepted.

It is difficult at first to accept that

S = {2, 4, 6, 8, . . .} and N = {1, 2, 3, 4, 5, . . .}

have the same number of elements, because clearly S is a proper
subset of N:

S ⊂ N
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Cardinality - Infinite Sets

It took some time for Cantor’s ideas to be accepted.

It is difficult at first to accept that

S = {2, 4, 6, 8, . . .} and N = {1, 2, 3, 4, 5, . . .}

have the same number of elements, because clearly S is a proper
subset of N:

S ⊂ N

In fact, Cantor defined an infinite set as a set that can be placed in one

to one correspondence with a proper subset of itself.
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Cardinality - Infinite Sets

The cardinality of N arises so frequently that Cantor assigned it a
symbol:

N(N) = ℵ0 (read "aleph null")
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Cardinality - Infinite Sets

The cardinality of N arises so frequently that Cantor assigned it a
symbol:

N(N) = ℵ0 (read "aleph null")

A set that can be put in one to one correspondence with the natural
numbers is called a countable set.

The following sets are countable (i.e., have cardinality ℵ0):
• The natural numbers N

• The integers Z

• The rational numbers Q

• The algebraic numbers (roots of polynomials with rational
coefficients)
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Cardinality - Infinite Sets

An example of a set that is not countable is the set of real numbers R.
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Cardinality - Infinite Sets

An example of a set that is not countable is the set of real numbers R.

The cardinality of the real numbers is denoted by the symbol ℵ1, and
the following relationship can be established:

ℵ1 = 2ℵ0

So, the cardinality of the real numbers R is the cardinality of the power
set of the natural numbers N.
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Cardinality - Infinite Sets

An example of a set that is not countable is the set of real numbers R.

The cardinality of the real numbers is denoted by the symbol ℵ1, and
the following relationship can be established:

ℵ1 = 2ℵ0

So, the cardinality of the real numbers R is the cardinality of the power
set of the natural numbers N.

Remark: Given that the integers, rationals, and algebraics are count-

able, the fact that the reals are not countable means that the overwhelm-

ing majority of real numbers must belong to the remaining category: the

transcendentals.
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Cantor’s Proof of the Uncountability of the Reals

Cantor established that the real numbers are not countable by the
following ingenious argument.

Any countable set can, in principle, be written as a list. Cantor showed
that this cannot be done for the real numbers by starting with a list that
is claimed to contain all of the real numbers, and proceeding to
construct a real number not in the list.
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Cantor’s Proof of the Uncountability of the Reals

Cantor established that the real numbers are not countable by the
following ingenious argument.

Any countable set can, in principle, be written as a list. Cantor showed
that this cannot be done for the real numbers by starting with a list that
is claimed to contain all of the real numbers, and proceeding to
construct a real number not in the list.

Recall that a real number can be represented as an integer i followed
by a decimal point and an infinite sequence of decimal digits
{a1, a2, a3, . . .}:

i.a1a2a3a4 . . .

MA395 Supplemental Notes on Set Theory – p.21/24



Cantor’s Proof of the Uncountability of the Reals

Suppose we are given a list that is claimed to contain all real numbers.
The ith entry in the list will consist of an integer ii followed by a decimal
point and an infinite sequence of decimal digits {ai1, ai2, ai3, . . .}.

So, the list has the following form:

i

1 i1.a11a12a13a14 . . .

2 i2.a21a22a23a24 . . .

3 i3.a31a32a33a34 . . .

4 i4.a41a42a43a44 . . .

5 i5.a51a52a53a54 . . .
...

...
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Cantor’s Proof of the Uncountability of the Reals

i

1 i1.a11a12a13a14 . . .

2 i2.a21a22a23a24 . . .

3 i3.a31a32a33a34 . . .

4 i4.a41a42a43a44 . . .
...

...

Cantor’s proof constructs a number not in the list by the following
algorithm:

• choose the integer part different from i1

• choose the first decimal digit different from a21

• choose the second decimal digit different from a32

• choose the third decimal digit different from a43
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Cantor’s Proof of the Uncountability of the Reals

A bit of reflection should convince you that continuing in this fashion
will indeed produce at real number that is not in the list, contradicting
the claim that the list contains all real numbers.

This type of proof is called proof by contradiction.

Some mathematicians advise colleagues and students to avoid proof
by contradiction whenever possible. A few even reject the validity of
proofs obtained in this fashion.

A more pragmatic approach acknowledges the fact that there are many
theorems whose only known proof is by contradiction and accepts
these results as valid.
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