Chapter 4: Special Distributions

Gene Quinn

Bernouli Trials

Suppose the random variable X takes values 1 and 0 with probabilities p and $q=1-p$, respectively. The pdf of X is

$$
p_{X}(x)= \begin{cases}p & x=1 \\ 1-p & x=0\end{cases}
$$

Bernouli Trials

Suppose the random variable X takes values 1 and 0 with probabilities p and $q=1-p$, respectively. The pdf of X is

$$
p_{X}(x)= \begin{cases}p & x=1 \\ 1-p & x=0\end{cases}
$$

The moment-generating function of the Bernoulli distribution is:

$$
M_{X}(t)=\mathrm{E}\left(e^{t x}\right)=P(X=0) \cdot e^{t .0}+P(X=1) \cdot e^{t \cdot 1}
$$

or

$$
M_{X}(t)=1-p+p e^{t}
$$

Binomial Distribution

Perform n independent Bernoulli trials with probability of success p. The pdf of Y, the sum of the n random variables

$$
Y=X_{1}+X_{2}+\cdots+X_{n}
$$

is given by

$$
p_{Y}(k)=\binom{n}{k} p^{k}(1-p)^{n-k}, \quad k=0,1, \ldots, n
$$

and is called the binomial distribution

Binomial Distribution

Perform n independent Bernoulli trials with probability of success p. The pdf of Y, the sum of the n random variables

$$
Y=X_{1}+X_{2}+\cdots+X_{n}
$$

is given by

$$
p_{Y}(k)=\binom{n}{k} p^{k}(1-p)^{n-k}, \quad k=0,1, \ldots, n
$$

and is called the binomial distribution
The moment-generating function of the binomial distribution is

$$
M_{Y}(t)=\left(1-p+p e^{t}\right)^{n}
$$

Generalized Bernouli Trials

Suppose the random variable X takes values 2,1 , and 0 with probabilities p, q, and $1-p-q$, respectively. The pdf of X is

$$
p_{X}(x)= \begin{cases}q & x=2 \\ p & x=1 \\ 1-p-q & x=0\end{cases}
$$

Generalized Bernouli Trials

Suppose the random variable X takes values 2, 1, and 0 with probabilities p, q, and $1-p-q$, respectively. The pdf of X is

$$
p_{X}(x)= \begin{cases}q & x=2 \\ p & x=1 \\ 1-p-q & x=0\end{cases}
$$

The moment-generating function of the Generalized Bernoulli distribution is:

$$
M_{X}(t)=\mathrm{E}\left(e^{t x}\right)=P(X=0) \cdot e^{t \cdot 0}+P(X=1) \cdot e^{t \cdot 1}+P(X=2) \cdot e^{t \cdot 2}
$$

or

$$
M_{X}(t)=1-p-q+p e^{t}+q e^{2 t}
$$

Extension to more than three possible outcomes is straightforward.

Trinomial Distribution

Perform n independent trials with three outcomes: $\{0,1,2\}$ having probabilities p, q, and $1-p-q$, respectively.
The pdf of Y, the sum of the n random variables

$$
Y=X_{1}+X_{2}+\cdots+X_{n}
$$

is given by

$$
p_{Y}\left(k_{1}, k_{2}\right)=\frac{n!}{k_{1}!k_{2}!\left(n-k_{1}-k_{2}\right)!} p^{k_{1}} q^{k_{2}}(1-p-q)^{n-k_{1}-k_{2}}
$$

and is called the trinomial distribution

Trinomial Distribution

The moment-generating function of the trinomial distribution is

$$
M_{Y}(t)=\left(1-p-q+p e^{t}+q e^{2 t}\right)^{n}
$$

The extension to trials with more than 3 possible outcomes is straightforward. The general case is called the multinomial distribution.

Poisson Distribution

Let $n \rightarrow \infty$ and $p \rightarrow 0$ in such a way that $n p$ tends to some positive constant λ.

The pdf of Y is

$$
p_{Y}(k)=\frac{\lambda^{k}}{k!} e^{-\lambda}, \quad k=0,1,2, \ldots
$$

and is called the Poisson distribution

Poisson Distribution

Let $n \rightarrow \infty$ and $p \rightarrow 0$ in such a way that $n p$ tends to some positive constant λ.

The pdf of Y is

$$
p_{Y}(k)=\frac{\lambda^{k}}{k!} e^{-\lambda}, \quad k=0,1,2, \ldots
$$

and is called the Poisson distribution
The moment-generating function of the Poisson distribution is

$$
M_{Y}(t)=e^{\lambda\left(e^{t}-1\right)}
$$

Geometric Distribution

For a sequence of Bernoulli trials let Y be the number of trials that precede the first success. The pdf of Y is

$$
p_{Y}(k)=p \cdot(1-p)^{k-1}, \quad k=1,2, \ldots
$$

and is called the Geometric distribution

Geometric Distribution

For a sequence of Bernoulli trials let Y be the number of trials that precede the first success. The pdf of Y is

$$
p_{Y}(k)=p \cdot(1-p)^{k-1}, \quad k=1,2, \ldots
$$

and is called the Geometric distribution
The moment-generating function of Y is

$$
M_{Y}(t)=\frac{p e^{t}}{1-(1-p) e^{t}}
$$

Negative Binomial Distribution

For a sequence of Bernoulli trials let Y be the number of trials that precede the $r^{t h}$ success. The pdf of Y is

$$
p_{Y}(k)=\binom{k-1}{r-1} p^{r} \cdot(1-p)^{k-r} \quad k=r, r+1, r+2, \ldots
$$

and is called the negative binomial distribution

Negative Binomial Distribution

For a sequence of Bernoulli trials let Y be the number of trials that precede the $r^{t h}$ success. The pdf of Y is

$$
p_{Y}(k)=\binom{k-1}{r-1} p^{r} \cdot(1-p)^{k-r} \quad k=r, r+1, r+2, \ldots
$$

and is called the negative binomial distribution
The moment-generating function of Y is

$$
M_{Y}(t)=\left(\frac{p e^{t}}{1-(1-p) e^{t}}\right)^{r}
$$

