Section 3.9: Further Properties of the Mean and Variance

Gene Quinn

Expectation of Multivariate Functions

Theorem: (3.9.1 - discrete case) Suppose *X* and *Y* are discrete random variables with joint pdf $p_{XY}(x, y)$ and g(X, Y) is a function of *X* and *Y*.

Then the expected value of the random variable g(X, Y) is given by

$$E[g(X,Y)] = \sum_{\text{all } x} \sum_{x} g(X,Y) \cdot p_{XY}(x,y)$$

Expectation of Multivariate Functions

Theorem: (3.9.1 - continuous case) Suppose *X* and *Y* are continuous random variables with joint pdf $f_{XY}(x, y)$ and g(X, Y) is a continuous function.

Then the expected value of the random variable g(X, Y) is given by

$$E\left[g(X,Y)\right] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x,y) \cdot f_{XY}(x,y) \, dx \, dy$$

provided that:

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} |g(x,y)| \cdot f_{XY}(x,y) \, dx \, dy < \infty$$

Expectation of Sums

Theorem: (3.9.2) Suppose X and Y are random variables with finite expected values, and a and b are any real numbers. Then

 $E(aX + bY) = a \cdot E(X) + b \cdot E(Y)$

Expectation of Sums

Theorem: (3.9.2) Suppose X and Y are random variables with finite expected values, and a and b are any real numbers. Then

 $E(aX + bY) = a \cdot E(X) + b \cdot E(Y)$

Corollary: Let W_1, W_2, \ldots, W_n be any set of *n* random variables, each with finite expectation.

Also, let a_1, a_2, \ldots, a_n be any set of n constants.

Then:

 $E(a_1W_1 + a_2W_2 + \dots + a_nW_n) = a_1E(W_1) + a_2E(W_2) + \dots + a_nE(W_n)$

Expectation of a Product of Independent Variables

Theorem: (3.9.2) Suppose X and Y are *independent* random variables with finite expected values. Then

 $E(XY) = E(X) \cdot E(Y)$

Variance of a Sum

Theorem: (3.9.4) Suppose W_1, W_2, \ldots, W_n are independent random variables each with finite variance. Then

 $\operatorname{Var}(W_1 + W_2 + \dots + W_n) = \operatorname{Var}(W_1) + \operatorname{Var}(W_2) + \dots + \operatorname{Var}(W_n)$

Variance of a Sum

Theorem: (3.9.4) Suppose W_1, W_2, \ldots, W_n are independent random variables each with finite variance. Then

 $\operatorname{Var}(W_1 + W_2 + \dots + W_n) = \operatorname{Var}(W_1) + \operatorname{Var}(W_2) + \dots + \operatorname{Var}(W_n)$

Corollary: Let W_1, W_2, \ldots, W_n be any set of *n* random variables, each with finite variance.

Also, let a_1, a_2, \ldots, a_n be any set of n constants.

Then

 $Var(a_1W_1 + a_2W_2 + \dots + a_nW_n) = a_1^2 Var(W_1) + a_2^2 Var(W_2) + \dots + a_n^2 Var(W_n)$