# Section 3.9: Further Properties of the Mean and Variance 

Gene Quinn

## Expectation of Multivariate Functions

Theorem: (3.9.1 - discrete case) Suppose $X$ and $Y$ are discrete random variables with joint pdf $p_{X Y}(x, y)$ and $g(X, Y)$ is a function of $X$ and $Y$.

Then the expected value of the random variable $g(X, Y)$ is given by

$$
E[g(X, Y)]=\sum_{\text {all }}^{x} \sum_{\text {all }}^{y} \text { } g(X, Y) \cdot p_{X Y}(x, y)
$$

## Expectation of Multivariate Functions

Theorem: (3.9.1 - continuous case) Suppose $X$ and $Y$ are continuous random variables with joint pdf $f_{X Y}(x, y)$ and $g(X, Y)$ is a continuous function.

Then the expected value of the random variable $g(X, Y)$ is given by

$$
E[g(X, Y)]=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x, y) \cdot f_{X Y}(x, y) d x d y
$$

provided that:

$$
\int_{-\infty}^{\infty} \int_{-\infty}^{\infty}|g(x, y)| \cdot f_{X Y}(x, y) d x d y<\infty
$$

## Expectation of Sums

Theorem: (3.9.2) Suppose $X$ and $Y$ are random variables with finite expected values, and $a$ and $b$ are any real numbers. Then

$$
E(a X+b Y)=a \cdot E(X)+b \cdot E(Y)
$$

## Expectation of Sums

Theorem: (3.9.2) Suppose $X$ and $Y$ are random variables with finite expected values, and $a$ and $b$ are any real numbers. Then

$$
E(a X+b Y)=a \cdot E(X)+b \cdot E(Y)
$$

Corollary: Let $W_{1}, W_{2}, \ldots, W_{n}$ be any set of $n$ random variables, each with finite expectation.

Also, let $a_{1}, a_{2}, \ldots, a_{n}$ be any set of $n$ constants.
Then:
$E\left(a_{1} W_{1}+a_{2} W_{2}+\cdots+a_{n} W_{n}\right)=a_{1} E\left(W_{1}\right)+a_{2} E\left(W_{2}\right)+\cdots+a_{n} E\left(W_{n}\right)$

## Expectation of a Product of Independent Variables

Theorem: (3.9.2) Suppose $X$ and $Y$ are independent random variables with finite expected values. Then

$$
E(X Y)=E(X) \cdot E(Y)
$$

## Variance of a Sum

Theorem: (3.9.4) Suppose $W_{1}, W_{2}, \ldots, W_{n}$ are independent random variables each with finite variance. Then

$$
\operatorname{Var}\left(W_{1}+W_{2}+\cdots+W_{n}\right)=\operatorname{Var}\left(W_{1}\right)+\operatorname{Var}\left(W_{2}\right)+\cdots+\operatorname{Var}\left(W_{n}\right)
$$

## Variance of a Sum

Theorem: (3.9.4) Suppose $W_{1}, W_{2}, \ldots, W_{n}$ are independent random variables each with finite variance. Then

$$
\operatorname{Var}\left(W_{1}+W_{2}+\cdots+W_{n}\right)=\operatorname{Var}\left(W_{1}\right)+\operatorname{Var}\left(W_{2}\right)+\cdots+\operatorname{Var}\left(W_{n}\right)
$$

Corollary: Let $W_{1}, W_{2}, \ldots, W_{n}$ be any set of $n$ random variables, each with finite variance.

Also, let $a_{1}, a_{2}, \ldots, a_{n}$ be any set of $n$ constants.
Then
$\operatorname{Var}\left(a_{1} W_{1}+a_{2} W_{2}+\cdots+a_{n} W_{n}\right)=a_{1}^{2} \operatorname{Var}\left(W_{1}\right)+a_{2}^{2} \operatorname{Var}\left(W_{2}\right)+\cdots+a_{n}^{2} \operatorname{Var}\left(W_{n}\right)$

