Section 3.8: Sums, Products, and Quotients of Independent Random Variables

Gene Quinn

## Sums of Independent Random Variables

Theorem: (3.8.1 - discrete case) Suppose $X$ and $Y$ are independent discrete random variables with pdfs $p_{X}(x)$ and $p_{Y}(y)$, respectively.

Define a random variable $W$ to be the sum of $X$ and $Y$.

Then the pdf of $W$ is:

$$
p_{W}(w)=\sum_{\text {all } x} p_{X}(x) \cdot p_{Y}(w-x)
$$

## Sums of Independent Random Variables

Example: Suppose two dice are thrown, and the random variables $X$ and $Y$ represent the numbers showing on the faces of the first and second die, respectively, so: $\quad p_{X}(x)=p_{Y}(y)=1 / 6$.

We are primarily interested in the sum of the two faces, so define a new random variable $W=X+Y$.

## Sums of Independent Random Variables

Example: Suppose two dice are thrown, and the random variables $X$ and $Y$ represent the numbers showing on the faces of the first and second die, respectively, so: $\quad p_{X}(x)=p_{Y}(y)=1 / 6$.

We are primarily interested in the sum of the two faces, so define a new random variable $W=X+Y$.

Theorem 3.8 .3 says that the pdf of $W$ will be

$$
p_{W}(w)=\sum_{\text {all } x} p_{X}(x) \cdot p_{Y}(w-x)
$$

## Sums of Independent Random Variables

Example: Suppose two dice are thrown, and the random variables $X$ and $Y$ represent the numbers showing on the faces of the first and second die, respectively, so: $\quad p_{X}(x)=p_{Y}(y)=1 / 6$.

We are primarily interested in the sum of the two faces, so define a new random variable $W=X+Y$.

Theorem 3.8 .3 says that the pdf of $W$ will be

$$
p_{W}(w)=\sum_{\text {all } x} p_{X}(x) \cdot p_{Y}(w-x)
$$

Suppose we want to find $p_{W}(4)$ :

$$
p_{W}(4)=p_{X}(1) \cdot p_{Y}(3)+p_{X}(2) \cdot p_{Y}(2)+p_{X}(3) \cdot p_{Y}(1)
$$



## Sums of Independent Random Variables

Theorem: (3.8.1 - continuous case) Suppose $X$ and $Y$ are independent continuous random variables with pdfs $f_{X}(x)$ and $f_{Y}(y)$, respectively.

Define a random variable $W$ to be the sum of $X$ and $Y$.

Then the pdf of $W$ is:

$$
f_{W}(w)=\int_{-\infty}^{\infty} f_{X}(x) \cdot f_{Y}(w-x) d x
$$

## Sums of Independent Random Variables

Theorem: (3.8.1 - continuous case) Suppose $X$ and $Y$ are independent continuous random variables with pdfs $f_{X}(x)$ and $f_{Y}(y)$, respectively.

Define a random variable $W$ to be the sum of $X$ and $Y$.

Then the pdf of $W$ is:

$$
f_{W}(w)=\int_{-\infty}^{\infty} f_{X}(x) \cdot f_{Y}(w-x) d x
$$

The above integral is called the convolution of the functions $f_{X}(x)$ and $f_{Y}(y)$.

## Products of Independent Random Variables

Theorem: (3.8.3) Suppose $X$ and $Y$ are independent continuous random variables with pdfs $f_{X}(x)$ and $f_{Y}(y)$, respectively.

Define a random variable $W$ to be the product $X Y$.

Then the pdf of $W$ is:

$$
f_{W}(w)=\int_{-\infty}^{\infty} \frac{1}{|x|} f_{X}(w / x) \cdot f_{Y}(x) d x
$$

## Quotients of Independent Random Variables

Theorem: (3.8.2) Suppose $X$ and $Y$ are independent continuous random variables with pdfs $f_{X}(x)$ and $f_{Y}(y)$, respectively. Assume that $X$ is zero for at most a set of isolated points.

Define a random variable $W$ to be the quotient $Y / X$.

Then the pdf of $W$ is:

$$
f_{W}(w)=\int_{-\infty}^{\infty}|x| f_{X}(x) \cdot f_{Y}(w x) d x
$$

## Sums of Non-Independent Random Variables

Theorem: (variation of 3.8.1-discrete case) Suppose $X$ and $Y$ are discrete random variables with joint pdf $p_{X Y}(x, y)$.

Define a random variable $W$ to be the sum of $X$ and $Y$.

Then the pdf of $W$ is:

$$
p_{W}(w)=\sum_{\text {all } x} p_{X Y}(x, w-x)
$$

## Sums of Non-Independent Random Variables

Theorem: (variation on 3.8.1 - continuous case) Suppose $X$ and $Y$ are independent continuous random variables with joint pdf $f_{X Y}(x, y)$.

Define a random variable $W$ to be the sum of $X$ and $Y$.

Then the pdf of $W$ is:

$$
f_{W}(w)=\int_{-\infty}^{\infty} f_{X Y}(x, w-x) d x
$$

## Products of Non-Independent Random Variables

Theorem: (variation on 3.8.3) Suppose $X$ and $Y$ are independent continuous random variables with joint pdf $f_{X Y}(x, y)$.

Define a random variable $W$ to be the product $X Y$.

Then the pdf of $W$ is:

$$
f_{W}(w)=\int_{-\infty}^{\infty} \frac{1}{|x|} f_{X Y}(w / x, x) d x
$$

## Quotients of Non-Independent Random Variables

Theorem: (variation of 3.8.2) Suppose $X$ and $Y$ are independent continuous random variables with joint pdf $f_{X Y}(x, y)$. Assume that $X$ is zero for at most a set of isolated points.

Define a random variable $W$ to be the quotient $Y / X$.

Then the pdf of $W$ is:

$$
f_{W}(w)=\int_{-\infty}^{\infty}|x| f_{X Y}(x, w x) d x
$$

