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Joint Densities - the Discrete Case

Suppose:

X is arandom variable with pdf  fx(x)
Y is arandom variable witn pdf  fy (y)
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Marginal Densities - the Discrete Case

If we know the joint pdf
pX,Y(xa y)

for two random variables X and Y, we can recover pdf px (x) for X by
summing over all values of Y,
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Marginal Densities - the Discrete Case

Example: The discrete distribution with probability density function
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Is called the poisson distribution.
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Marginal Densities - the Discrete Case

Adding up the probabilities px (x) forx =0, 1,2, ... gives:
0 ALe—A

pr(a:) - Z !

x=0
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Marginal Densities - the Discrete Case

The bivariate poisson distribution is defined by the joint pdf

x\Y
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Joint Densities - the Continuous Case

Suppose:

X is a continuous random variable with pdf  fx(z)
Y is a continuous random variable witn pdf  fy (y)
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Joint Densities - the Continuous Case

Suppose:

X is a continuous random variable with pdf  fx(z)
Y is a continuous random variable witn pdf  fy (y)

Definition: Two random variables defined on the same set of real
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Joint Densities - the Continuous Case

Suppose two random variables X and Y have the joint density function

1
fxy(@y) =1 0<z<2 0<y<g
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Marginal Densities - the Continuous Case

As In the discrete case, if we have a joint pdf for two continuous
random variables X and Y,

fX,Y(x7y>

we can obtain univariate or marginal pdfs for X and Y.
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Joint Densities - the Continuous Case

The marginal pdf fy (y) is given by

2
fY(y)Zflda: = x](Q):Z, 0<y<1/2
0
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Joint CDFs

Definition: Let X and Y be random variables. The joint cumulative
distribution function  orjoint cdf of X and Y is

FX,Y(’UJ,’U) = P(XS’U, and YS’U)
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Obtaining Joint PDFs From Joint CDFs

Theorem: (3.7.3) Let X and Y be random variables with joint cdf

FXY (’LL, ’U)

Then the joint pdf of X and Y,
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Obtaining Joint PDFs From Joint CDFs

Example: Let X and Y be random variables with joint cdf

1
Fxy(u,v) = 5 (u?v? 4+ u?v?)

Then the joint pdf of X and Y is
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Obtaining Joint PDFs From Joint CDFs

Example: Let X and Y be random variables with joint cdf

1
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Obtaining Joint PDFs From Joint CDFs

The first step is to take the partial derivative of F'xy (x,y) with respect
tox

e ( 3y2 + x2y3) = % (3a32y2 + 233y3)
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Multivariate Densities

The bivariate versions of definitions and theorems in this section
extend in the obvious way to the case of more than two variables.

Definition: The joint pdf of a set of n discrete random variables

le X27 X37 .- Xn
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Multivariate Marginal Densities

In the case of the joint pdf of 2 random variables

fXY(xay)7

we have 2 marginal pdfs,

r) and
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Multivariate Marginal Densities

In each case, the marginal pdf is obtained by integrating some subset
of the n random variables over its support.

For example, the marginal pdf of X> would be:

fx,(x2) = / / fx,x, (x1,...,¢n)dzy dxs - - - dxy,
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Independence of Two Random Variables

Definition: Two random variables X and Y are said to be
Independent if for every pair of intervals A and B,

P(XeAandY e B) = P(Xe€ A)- P(Y € B)
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Independence of Two Random Variables

Definition: Two random variables X and Y are said to be
Independent if for every pair of intervals A and B,

P(XeAandY e B) = P(Xe€ A)- P(Y € B)

The above definition suggests that, for a pair of independent random
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Independence of Two Random Variables

Theorem: Two random variables X and Y with joint pdf

fxy(z,y)

are independent if and only if
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Independence of Two Random Variables

Another way of looking at independence of two random variables is the
following:

If X and Y are independent,
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Independence of Two Random Variables

Another way of looking at independence of two random variables is the
following:

If X and Y are independent,

® knowledge of X provides no information about Y
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Independence of More Than Two Random Variables

The concept of independence of two random variables extends to the
case of n > 2 random variables:

Definition: The random variables
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Random Samples

An important special case of n independent random variables occurs
when the marginal pdfs of the X; are identical.
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