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Joint Densities - the Discrete Case

Suppose:

X is a random variable with pdf fX(x)

Y is a random variable witn pdf fY (y)
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Suppose:
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The pdfs fX(x) and fY (y) characterize X and Y individually, but
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Joint Densities - the Discrete Case

Suppose:

X is a random variable with pdf fX(x)

Y is a random variable witn pdf fY (y)

The pdfs fX(x) and fY (y) characterize X and Y individually, but
provide no information on their simultaneous or joint behavior.

To describe the joint behavior of X and Y , we need to introduce the

idea of a density function that is a function of both X and Y
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Marginal Densities - the Discrete Case

If we know the joint pdf
pX,Y (x, y)

for two random variables X and Y , we can recover pdf pX(x) for X by
summing over all values of Y ,

pX(x) =
∑

all y

pX,Y (x, y)
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summing over all values of Y ,

pX(x) =
∑

all y

pX,Y (x, y)
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Larson and Marx Section 3.7 – p.3/23



Marginal Densities - the Discrete Case

If we know the joint pdf
pX,Y (x, y)

for two random variables X and Y , we can recover pdf pX(x) for X by
summing over all values of Y ,

pX(x) =
∑

all y

pX,Y (x, y)

A pdf obtained in this way is called a marginal pdf.

pX(x) is also said to be the marginal density of X .
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Marginal Densities - the Discrete Case

Example: The discrete distribution with probability density function

pX(x) =
λxe−λ

x!
, x = 0, 1, 2, . . .

is called the poisson distribution.
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Marginal Densities - the Discrete Case

Example: The discrete distribution with probability density function

pX(x) =
λxe−λ

x!
, x = 0, 1, 2, . . .

is called the poisson distribution.

This is a probability density function by virtue of the fact that the series
expansion of eλ is:

eλ =
λ0

0!
+

λ1

1!
+

λ2

2!
+ · · ·
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Marginal Densities - the Discrete Case

Adding up the probabilities pX(x) for x = 0, 1, 2, . . . gives:

∞
∑

x=0

pX(x) =
∞
∑

x=0

λxe−λ

x!
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Marginal Densities - the Discrete Case

Adding up the probabilities pX(x) for x = 0, 1, 2, . . . gives:

∞
∑

x=0

pX(x) =
∞
∑

x=0

λxe−λ

x!

= e−λ

(

∞
∑

x=0

λx

x!

)
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Marginal Densities - the Discrete Case

Adding up the probabilities pX(x) for x = 0, 1, 2, . . . gives:

∞
∑

x=0

pX(x) =
∞
∑

x=0

λxe−λ

x!

= e−λ

(

∞
∑

x=0

λx

x!

)

= e−λ
(

eλ
)

= 1
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Marginal Densities - the Discrete Case

The bivariate poisson distribution is defined by the joint pdf

pX,Y (x, y) =
λx

1
λy

2

x!y!
· e−λ1−λ2
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Marginal Densities - the Discrete Case

The bivariate poisson distribution is defined by the joint pdf

pX,Y (x, y) =
λx

1
λy

2

x!y!
· e−λ1−λ2

If we sum over all values of Y , we obtain the marginal pdf of X ,

pX(x) = e−λ1
λx

1

x!

(

∞
∑

y=0

e−λ2
λy

2

y!

)

Larson and Marx Section 3.7 – p.6/23



Marginal Densities - the Discrete Case

The bivariate poisson distribution is defined by the joint pdf

pX,Y (x, y) =
λx

1
λy

2

x!y!
· e−λ1−λ2

If we sum over all values of Y , we obtain the marginal pdf of X ,

pX(x) = e−λ1
λx

1

x!

(

∞
∑

y=0

e−λ2
λy

2

y!

)

We have shown that the sum in parentheses is 1, so the marginal pdf
of X is

pX(x) = e−λ1
λx

1

x!

which is a (univariate) poisson.
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Joint Densities - the Continuous Case

Suppose:

X is a continuous random variable with pdf fX(x)

Y is a continuous random variable witn pdf fY (y)
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Joint Densities - the Continuous Case

Suppose:

X is a continuous random variable with pdf fX(x)

Y is a continuous random variable witn pdf fY (y)

Definition: Two random variables defined on the same set of real
numbers are said to be jointly continuous if there exists a function

fX,Y (x, y)

such that for any region R in the xy-plane,

P ((X, Y ) ∈ R) =

∫ ∫

R

fX,Y (x, y) dx dy

fX,Y (x, y) is called the joint pdf of X and Y .
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Joint Densities - the Continuous Case

Suppose two random variables X and Y have the joint density function

fX,Y (x, y) = 1, 0 ≤ x ≤ 2, 0 ≤ y ≤
1

2
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Joint Densities - the Continuous Case

Suppose two random variables X and Y have the joint density function

fX,Y (x, y) = 1, 0 ≤ x ≤ 2, 0 ≤ y ≤
1

2

This is a special case of the joint uniform pdf.
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Joint Densities - the Continuous Case

Suppose two random variables X and Y have the joint density function

fX,Y (x, y) = 1, 0 ≤ x ≤ 2, 0 ≤ y ≤
1

2

This is a special case of the joint uniform pdf.

For any region R belonging to the rectangle with width 2 and height 1

2
,

the probability that (X, Y ) belongs to R is just the area of R.
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Marginal Densities - the Continuous Case

As in the discrete case, if we have a joint pdf for two continuous
random variables X and Y ,

fX,Y (x, y)

we can obtain univariate or marginal pdfs for X and Y .
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Marginal Densities - the Continuous Case

As in the discrete case, if we have a joint pdf for two continuous
random variables X and Y ,

fX,Y (x, y)

we can obtain univariate or marginal pdfs for X and Y .

Theorem: (3.7.2) Suppose X and Y are jointly continuous with joint
pdf fX,Y (x, y). Then the marginal pdfs of X and Y are

fX(x) =

∫

∞

−∞

fX,Y (x, y) dy

and

fY (y) =

∫

∞

−∞

fX,Y (x, y) dx
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Joint Densities - the Continuous Case

Suppose two random variables X and Y have the joint density function

fX,Y (x, y) = 1, 0 ≤ x ≤ 2, 0 ≤ y ≤
1

2
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Joint Densities - the Continuous Case

Suppose two random variables X and Y have the joint density function

fX,Y (x, y) = 1, 0 ≤ x ≤ 2, 0 ≤ y ≤
1

2

The marginal pdf fX(x) is given by

fX(x) =

∫

1/2

0

1 dy = y]1/2

0
=

1

2
, 0 ≤ x ≤ 2
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Joint Densities - the Continuous Case

The marginal pdf fY (y) is given by

fY (y) =

∫

2

0

1 dx = x]2
0

= 2, 0 ≤ y ≤ 1/2
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Joint CDFs

Definition: Let X and Y be random variables. The joint cumulative
distribution function or joint cdf of X and Y is

FX,Y (u, v) = P ( X ≤ u and Y ≤ v)
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Obtaining Joint PDFs From Joint CDFs

Theorem: (3.7.3) Let X and Y be random variables with joint cdf

FXY (u, v)

Then the joint pdf of X and Y ,

fXY (x, y).

is given by the second partial derivative

fX,Y (x, y) =
∂2

∂x∂y
FX,Y (x, y)
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Obtaining Joint PDFs From Joint CDFs

Theorem: (3.7.3) Let X and Y be random variables with joint cdf

FXY (u, v)

Then the joint pdf of X and Y ,

fXY (x, y).

is given by the second partial derivative

fX,Y (x, y) =
∂2

∂x∂y
FX,Y (x, y)

(provided FX,Y (x, y) has continuous second partial derivatives)
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Obtaining Joint PDFs From Joint CDFs

Example: Let X and Y be random variables with joint cdf

FXY (u, v) =
1

2

(

u3v2 + u2v3
)

Then the joint pdf of X and Y is

fXY (x, y) =
∂2

∂x∂y
FXY (x, y)
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Obtaining Joint PDFs From Joint CDFs

Example: Let X and Y be random variables with joint cdf

FXY (u, v) =
1

2

(

u3v2 + u2v3
)

Then the joint pdf of X and Y is

fXY (x, y) =
∂2

∂x∂y
FXY (x, y)

Recall that we evaluate the mixed second order partial derivative in two
steps:

∂2

∂x∂y
FXY (x, y) =

∂

∂y

(

∂

∂x
FXY (x, y)

)
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Obtaining Joint PDFs From Joint CDFs

The first step is to take the partial derivative of FXY (x, y) with respect
to x

∂

∂x

1

2

(

x3y2 + x2y3
)

=
1

2

(

3x2y2 + 2xy3
)
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Obtaining Joint PDFs From Joint CDFs

The first step is to take the partial derivative of FXY (x, y) with respect
to x

∂

∂x

1

2

(

x3y2 + x2y3
)

=
1

2

(

3x2y2 + 2xy3
)

The second step is to take the partial derivative of the result with
respect to y:

∂

∂y

(

1

2

(

3x2y2 + 2xy3
)

)

=
1

2

(

6x2y + 6xy2
)

so
fXY (x, y) = 3

(

x2y + xy2
)
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Multivariate Densities

The bivariate versions of definitions and theorems in this section
extend in the obvious way to the case of more than two variables.

Definition: The joint pdf of a set of n discrete random variables

X1, X2, X3, . . .Xn

is defined to be:

pX1···xN
(x1, x2, x3, . . . , xn) = P (X1 = x1, X2 = x2, X3 = x3, . . . , Xn = xn)
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Multivariate Densities

The bivariate versions of definitions and theorems in this section
extend in the obvious way to the case of more than two variables.

Definition: The joint pdf of a set of n discrete random variables

X1, X2, X3, . . .Xn

is defined to be:

pX1···xN
(x1, x2, x3, . . . , xn) = P (X1 = x1, X2 = x2, X3 = x3, . . . , Xn = xn)

In the case of n continuous random variables, the joint pdf is the
function that, for any region R in R

n, satisfies

P ((X1, X2, . . . , Xn) ∈ R) =

∫

· · ·

∫

R

fX1···Xn
(x1, x2, . . . , xn) dx1 · · · dxn
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Multivariate Marginal Densities

In the case of the joint pdf of 2 random variables

fXY (x, y),

we have 2 marginal pdfs,

fX(x) and fY (y)
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Multivariate Marginal Densities

In the case of the joint pdf of 2 random variables

fXY (x, y),

we have 2 marginal pdfs,

fX(x) and fY (y)

In the case of a joint pdf of n random variables, we have:

•
(

n
1

)

univariate marginal pdfs

•
(

n
2

)

bivariate marginal pdfs
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Multivariate Marginal Densities

In the case of the joint pdf of 2 random variables

fXY (x, y),

we have 2 marginal pdfs,

fX(x) and fY (y)

In the case of a joint pdf of n random variables, we have:

•
(

n
1

)

univariate marginal pdfs

•
(

n
2

)

bivariate marginal pdfs

•
(

n
3

)

trivariate marginal pdfs
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Multivariate Marginal Densities

In the case of the joint pdf of 2 random variables

fXY (x, y),

we have 2 marginal pdfs,

fX(x) and fY (y)

In the case of a joint pdf of n random variables, we have:

•
(

n
1

)

univariate marginal pdfs

•
(

n
2

)

bivariate marginal pdfs

•
(

n
3

)

trivariate marginal pdfs

• and so on until
(

n
n−1

)

n − 1-variate marginal pdfs

Larson and Marx Section 3.7 – p.17/23



Multivariate Marginal Densities

In each case, the marginal pdf is obtained by integrating some subset
of the n random variables over its support.

For example, the marginal pdf of X2 would be:

fX2
(x2) =

∫

∞

−∞

· · ·

∫

∞

−∞

fX1···Xn
(x1, . . . , xn)dx1 dx3 · · · dxn
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Multivariate Marginal Densities

In each case, the marginal pdf is obtained by integrating some subset
of the n random variables over its support.

For example, the marginal pdf of X2 would be:

fX2
(x2) =

∫

∞

−∞

· · ·

∫

∞

−∞

fX1···Xn
(x1, . . . , xn)dx1 dx3 · · · dxn

The marginal pdf of X2 and X4 would be the joint pdf:

fX2X4
(x2, x4) =

∫

∞

−∞

· · ·

∫

∞

−∞

fX1···Xn
(x1, . . . , xn)dx1 dx3 dx5 · · · dxn
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Independence of Two Random Variables

Definition: Two random variables X and Y are said to be
independent if for every pair of intervals A and B,

P (X ∈ A and Y ∈ B) = P (X ∈ A) · P (Y ∈ B)
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Independence of Two Random Variables

Definition: Two random variables X and Y are said to be
independent if for every pair of intervals A and B,

P (X ∈ A and Y ∈ B) = P (X ∈ A) · P (Y ∈ B)

The above definition suggests that, for a pair of independent random
variables, the joint pdf might factor into the product of the marginals.

The following important theorem asserts this fact.
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Independence of Two Random Variables

Theorem: Two random variables X and Y with joint pdf

fXY (x, y)

are independent if and only if

fXY (x, y) = fX(x) · fY (y)

where:

• fX(x) is the marginal pdf of X

• fY (y) is the marginal pdf of Y
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Independence of Two Random Variables

Another way of looking at independence of two random variables is the
following:

If X and Y are independent,

• knowledge of X provides no information about Y

• knowledge of Y provides no information about X
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Independence of Two Random Variables

Another way of looking at independence of two random variables is the
following:

If X and Y are independent,

• knowledge of X provides no information about Y

• knowledge of Y provides no information about X

In general, if X and Y are not independent, knowledge of one tells us
something about the other.
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Independence of More Than Two Random Variables

The concept of independence of two random variables extends to the
case of n > 2 random variables:

Definition: The random variables

X1 X2, . . .Xn

are said to be independent if, for every

(x1, x2, . . . , xn) ∈ R
n,

fX1X2···Xn
(x1, x2, . . . , xn) = fX1

(x1) · fX2
(x2) · · · fXn

(xn)

where fXi
(xi) is the marginal pdf of xi, i ∈ {1, 2, . . . , n}.
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Random Samples

An important special case of n independent random variables occurs
when the marginal pdfs of the Xi are identical.
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Random Samples

An important special case of n independent random variables occurs
when the marginal pdfs of the Xi are identical.

Definition: A random sample of size n is a set of independent
random variables

{X1, X2, . . . , Xn}

all having the same pdf.
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Random Samples

An important special case of n independent random variables occurs
when the marginal pdfs of the Xi are identical.

Definition: A random sample of size n is a set of independent
random variables

{X1, X2, . . . , Xn}

all having the same pdf.

In this case, the joint pdf is:

fX1X2···Xn
(x1, x2, . . . , xn) =

n
∏

i=1

fX(xi)

where fX(x) is common pdf of the xi.
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