

Gene Quinn

Definition of Expected Value

Definition: Suppose a discrete random variable X has probability density function $p_{X}(k)$.

The expected value of X, denoed by $E(X)$ or μ or μ_{X} is given by:

$$
E(X)=\mu=\mu_{X} \quad=\sum_{\text {all }_{k}} k \cdot p_{X}(k)
$$

Definition of Expected Value

Definition: Suppose a discrete random variable X has probability density function $p_{X}(k)$.

The expected value of X, denoed by $E(X)$ or μ or μ_{X} is given by:

$$
E(X)=\mu=\mu_{X} \quad=\sum_{\text {all }_{k}} k \cdot p_{X}(k)
$$

The sum is taken over all values k that the random variable can assume.

Definition of Expected Value

Definition: Suppose a continuous random variable Y has pdf $f_{Y}(y)$.
The expected value of Y, denoed by $E(Y)$ or μ or μ_{Y} is given by:

$$
E(Y)=\mu=\mu_{Y}=\int_{-\infty}^{\infty} y \cdot f_{Y}(y) d y
$$

Definition of Expected Value

Definition: Suppose a continuous random variable Y has pdf $f_{Y}(y)$.
The expected value of Y, denoed by $E(Y)$ or μ or μ_{Y} is given by:

$$
E(Y)=\mu=\mu_{Y}=\int_{-\infty}^{\infty} y \cdot f_{Y}(y) d y
$$

Equivalently, integral may also be taken over the subset of the real line where f_{Y} has support.

Expectation

In the discrete case we assume that

$$
\sum_{\text {all }_{k}}|k| \cdot p_{X}(k)<\infty
$$

Expectation

In the discrete case we assume that

$$
\sum_{\text {all } k}|k| \cdot p_{X}(k)<\infty
$$

Otherwise, we say that the random variable X does not have a finite expected value.

Expectation

In the continuous case we assume that

$$
\int_{-\infty}^{\infty}|y| \cdot f_{Y}(y) d y<\infty
$$

Expectation

In the continuous case we assume that

$$
\int_{-\infty}^{\infty}|y| \cdot f_{Y}(y) d y<\infty
$$

Otherwise, we say that the random variable Y does not have a finite expected value.

Expected Value of a Function

Definition: Suppose a discrete random variable X has probability density function $p_{X}(k)$ and $g(X)$ is a function of X.

The expected value of the random variable $g(X)$ is given by:

$$
E[g(X)]=\sum_{\text {all } k} g(k) \cdot p_{X}(k)
$$

Expected Value of a Function

Definition: Suppose a discrete random variable X has probability density function $p_{X}(k)$ and $g(X)$ is a function of X.

The expected value of the random variable $g(X)$ is given by:

$$
E[g(X)]=\sum_{\text {all } k} g(k) \cdot p_{X}(k)
$$

We assume that the sum converges absolutely:

$$
\sum_{\text {all }_{k}}|g(k)| \cdot p_{X}(k)<\infty
$$

Expected Value of a Function

Definition: Suppose a continuous random variable Y has probability density function $p_{Y}(y)$ and $g(Y)$ is a function of Y.

The expected value of the random variable $g(X)$ is given by:

$$
E[g(Y)]=\int_{-\infty}^{\infty} g(y) \cdot f_{Y}(y) d y
$$

Expected Value of a Function

Definition: Suppose a continuous random variable Y has probability density function $p_{Y}(y)$ and $g(Y)$ is a function of Y.

The expected value of the random variable $g(X)$ is given by:

$$
E[g(Y)]=\int_{-\infty}^{\infty} g(y) \cdot f_{Y}(y) d y
$$

We assume that the integral converges absolutely:

$$
\int_{-\infty}^{\infty}|g(y)| \cdot f_{Y}(y) d y<\infty
$$

Expected Value of a Linear Function

For any random variable W and any constants a and b,

$$
E(a W+b)=a \cdot E(W)+b
$$

Median of a Discrete Random Variable

If X is a discrete random variable, the median m is defined to be that point for which

$$
P(X<m)=P(X>m)
$$

Median of a Discrete Random Variable

If X is a discrete random variable, the median m is defined to be that point for which

$$
P(X<m)=P(X>m)
$$

Example: If X is the sum of the faces of two dice, $m=7$.

Median of a Discrete Random Variable

If X is a discrete random variable, the median m is defined to be that point for which

$$
P(X<m)=P(X>m)
$$

Example: If X is the sum of the faces of two dice, $m=7$.
In the event that there are two distinct values m_{1} and m_{2} such that

$$
P\left(X \leq m_{1}\right) \quad=\quad P\left(X \geq m_{2}\right) \quad=\quad 0.5
$$

the median is defined to be the arithmetic mean of m_{1} and m_{2}.

Median of a Discrete Random Variable

If X is a discrete random variable, the median m is defined to be that point for which

$$
P(X<m)=P(X>m)
$$

Example: If X is the sum of the faces of two dice, $m=7$.
In the event that there are two distinct values m_{1} and m_{2} such that

$$
P\left(X \leq m_{1}\right) \quad=\quad P\left(X \geq m_{2}\right) \quad=\quad 0.5
$$

the median is defined to be the arithmetic mean of m_{1} and m_{2}.
Example: If X is the outcome of rolling a single die, $m=3.5$.

Median of a Continuous Random Variable

Definition: If Y is a continuous random variable with probability density function $p_{Y}(y)$, the median m of Y is the solution to the integral equation

$$
\int_{-\infty}^{m} f_{Y}(y) d y=0.5
$$

Median of a Continuous Random Variable

Definition: If Y is a continuous random variable with probability density function $p_{Y}(y)$, the median m of Y is the solution to the integral equation

$$
\int_{-\infty}^{m} f_{Y}(y) d y=0.5
$$

Equivalently, if $F_{Y}(y)$ is the cdf of Y, the median is the number m that satisfies the equation

$$
F_{Y}(m)=0.5
$$

