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Continuous Random Variables

Recall that a random variable is in fact a real-valued functon defined
on a sample space S,

X:S—R
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Interval Functions

One way around the problem is to consider only a certain class of
subsets when assigning probabilities.

For example, we can consider only subsets that qualify as intervals :

For a,b € R, with a < b, these are sets of the form:
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Continuous Random Variables

Now consider the experiment:

A real number is selected randomly from the interval |0, 1]

We will define the continuous random variable X to be simply the
number selected, so the function defining our random variable is:

Larson and Marx Section 3.4 — p.5/2.



Continuous Random Variables

Now consider the experiment:

A real number is selected randomly from the interval |0, 1]

We will define the continuous random variable X to be simply the
number selected, so the function defining our random variable is:

Larson and Marx Section 3.4 — p.5/2.



Continuous Random Variables

Now consider the experiment:

A real number is selected randomly from the interval |0, 1]

We will define the continuous random variable X to be simply the
number selected, so the function defining our random variable is:

Larson and Marx Section 3.4 — p.5/2.



Continuous Probability Density Functions

Now we define a continuous probability density function  for X, our
continuous random variable.
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Continuous Probability Density Functions

Example: Suppose a real number is chosen randomly from the
interval [0, 1].

Define the random variable X to be simply the number chosen.
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The Uniform Distribution

If we integrate a continuous probability density over its support, the
result should be 1:

/ fx(x)de = 1
support
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The Uniform Distribution

Conceptually, the uniform distribution arises from the experiment of
choosing a single real number from the interval [0, 1] in such a way that
every number in the interval has an equal chance of being chosen.
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The Uniform Distribution

Example: Suppose X has the uniform distribution.

Find the probability that 0.2 < X < 0.5.
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Continuous Cumulative Distribution Functions

Definition: (3.4.3) The cumulative distribution function (cdf) of a
continuous random variable X is defined to be

FX(w):/_m fx(r)dr = P(X <ux)
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Continuous Cumulative Distribution Functions

Example: Suppose the random variable X has the uniform
distribution. what is its cdf?
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Relationship Between the pdf and cdf

Recall the definition of the cdf,

Fy(z) = /_ fx(r)dr = P(X <a)
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Theorems involving the cdf

Theorem: (3.4.2) Let X be a continuous random variable with cdf
FX (.T)

Then:
a) P(X >s)=1-Fx(s)
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Linear Transforms of Continuous Random Variables

Example: Most calculators and mathematical software packages have
a function to simulate a continuous random variable with the uniform

distribution.

Often, this function is called rand
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Linear Transforms of Continuous Random Variables

Example: Most calculators and mathematical software packages have
a function to simulate a continuous random variable with the uniform
distribution.

Often, this function is called rand

Suppose instead we are choosing a real number at random from the
interval |3, 7].
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Linear Transforms of Continuous Random Variables

Theorem 3.4.3 says that the probability density function of Y = 4X + 3
will be given by:
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Other Examples of pdfs

Consider the probability density function
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Other Examples of pdfs

The probability distribution with pdf

1
fx(z) = ;6_96/”, 0<ux

Is called the exponential distribution and plays an important role in
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Failure Analysis Example

Suppose the time to failure of a light bulb has an exponential
distribution with ¢ = 500 (hours). Then the pdf of the time to failure is:

1
fX(w) _ _e—x/5007 0<uzx
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Failure Analysis Example

Again suppose the time to failure of a light bulb has an exponential
distribution with . = 500 (hours).

What is the probability that a given light bulb lasts more than 600
hours?

Larson and Marx Section 3.4 — p.22/2



Failure Analysis Example

Again suppose the time to failure of a light bulb has an exponential
distribution with . = 500 (hours).

What is the probability that a given light bulb lasts more than 600
hours?

The probability that it lasts 600 hours or less is F'x (600), so the
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