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Continuous Random Variables

Recall that a random variable is in fact a real-valued functon defined
on a sample space S,

X : S 7→ R
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Recall that a random variable is in fact a real-valued functon defined
on a sample space S,

X : S 7→ R

So far, we have restricted our attention to the case where S is finite or
countably infinite.
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Continuous Random Variables

Recall that a random variable is in fact a real-valued functon defined
on a sample space S,

X : S 7→ R

So far, we have restricted our attention to the case where S is finite or
countably infinite.

Problems where this is not the case arise often, so we need to extend
our definitions accordingly.
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Continuous Random Variables

Consider the following experiment:

A real number is chosen at random from the interval [0, 1]
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Continuous Random Variables

Consider the following experiment:

A real number is chosen at random from the interval [0, 1]

The number of possible outcomes for this experiment is uncountably
infinite.
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Continuous Random Variables

Consider the following experiment:

A real number is chosen at random from the interval [0, 1]

The number of possible outcomes for this experiment is uncountably
infinite.

Remember that a random variable is a map from the sample space S

into the real numbers.

One problem that arises in this case is that there are too many subsets
of [0, 1] to assign each of them a distinct real number.
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Continuous Random Variables

Consider the following experiment:

A real number is chosen at random from the interval [0, 1]

The number of possible outcomes for this experiment is uncountably
infinite.

Remember that a random variable is a map from the sample space S

into the real numbers.

One problem that arises in this case is that there are too many subsets
of [0, 1] to assign each of them a distinct real number.

Fortunately, this is neither necessary nor desirable.
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Interval Functions

One way around the problem is to consider only a certain class of
subsets when assigning probabilities.

For example, we can consider only subsets that qualify as intervals :

For a, b ∈ R, with a < b, these are sets of the form:

(a, b) I = {x : a < x < b}

[a, b) I = {x : a ≤ x < b}

(a, b] I = {x : a < x ≤ b}

[a, b] I = {x : a ≤ x ≤ b}
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Interval Functions

One way around the problem is to consider only a certain class of
subsets when assigning probabilities.

For example, we can consider only subsets that qualify as intervals :

For a, b ∈ R, with a < b, these are sets of the form:

(a, b) I = {x : a < x < b}

[a, b) I = {x : a ≤ x < b}

(a, b] I = {x : a < x ≤ b}

[a, b] I = {x : a ≤ x ≤ b}

We also allow the limiting cases where one or both of a and b are ±∞,

(a,∞), (−∞, b], , (−∞,∞), etc.
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Continuous Random Variables

Now consider the experiment:

A real number is selected randomly from the interval [0, 1]

We will define the continuous random variable X to be simply the
number selected, so the function defining our random variable is:

X : S 7→ [0, 1]

according to the rule:
X(xi) = xi
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Continuous Random Variables

Now consider the experiment:

A real number is selected randomly from the interval [0, 1]

We will define the continuous random variable X to be simply the
number selected, so the function defining our random variable is:

X : S 7→ [0, 1]

according to the rule:
X(xi) = xi

For any outcome xi, the value of random variable X is defined to be
simply the number chosen, xi.
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Continuous Random Variables

Now consider the experiment:

A real number is selected randomly from the interval [0, 1]

We will define the continuous random variable X to be simply the
number selected, so the function defining our random variable is:

X : S 7→ [0, 1]

according to the rule:
X(xi) = xi

For any outcome xi, the value of random variable X is defined to be
simply the number chosen, xi.

A continuous random variable is often an identity function, and in this
regard the continuous case is simpler than the discrete case.
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Continuous Probability Density Functions

Now we define a continuous probability density function for X , our
continuous random variable.
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Continuous Probability Density Functions

Now we define a continuous probability density function for X , our
continuous random variable.

We will use the idea of an interval function in the following definitions:

Definition: (3.4.2) A function X that maps a subset of the real
numbers into the real numbers is called a continuous random
variable .
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Continuous Probability Density Functions

Now we define a continuous probability density function for X , our
continuous random variable.

We will use the idea of an interval function in the following definitions:

Definition: (3.4.2) A function X that maps a subset of the real
numbers into the real numbers is called a continuous random
variable .

The probability density function (pdf) of X is defined to be the
function

fX(x)

having the property that for any numbers a and b,

P (a ≤ X ≤ b) =

∫ b

a

fX(x)dx
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Continuous Probability Density Functions

Example: Suppose a real number is chosen randomly from the
interval [0, 1].

Define the random variable X to be simply the number chosen.
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Continuous Probability Density Functions

Example: Suppose a real number is chosen randomly from the
interval [0, 1].

Define the random variable X to be simply the number chosen.

If we assume that every number in the interval is equally likely to be
selected, a reasonable probability density function is:

fX(x) =











0 x < 0

1 0 ≤ x ≤ 1

0 x > 1
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Continuous Probability Density Functions

Example: Suppose a real number is chosen randomly from the
interval [0, 1].

Define the random variable X to be simply the number chosen.

If we assume that every number in the interval is equally likely to be
selected, a reasonable probability density function is:

fX(x) =











0 x < 0

1 0 ≤ x ≤ 1

0 x > 1

A probability density function is said to have support on the subset of
R where it is positive.

The above probability density function has support on [0, 1].
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The Uniform Distribution

If we integrate a continuous probability density over its support, the
result should be 1:

∫

support
fX(x)dx = 1
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The Uniform Distribution

If we integrate a continuous probability density over its support, the
result should be 1:

∫

support
fX(x)dx = 1

This is true for our density function,

∫

1

0

1dx = x]
1

0
= 1

and in fact the probability distrubution associated with this density
function is known as the uniform distribution .
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The Uniform Distribution

Conceptually, the uniform distribution arises from the experiment of
choosing a single real number from the interval [0, 1] in such a way that
every number in the interval has an equal chance of being chosen.
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The Uniform Distribution

Conceptually, the uniform distribution arises from the experiment of
choosing a single real number from the interval [0, 1] in such a way that
every number in the interval has an equal chance of being chosen.

The probability that the number chosen lies in the interval [a, b] is given
by:

P (a ≤ x ≤ b) =

∫ b

a

1dx = x]
b
a = b − a
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The Uniform Distribution

Conceptually, the uniform distribution arises from the experiment of
choosing a single real number from the interval [0, 1] in such a way that
every number in the interval has an equal chance of being chosen.

The probability that the number chosen lies in the interval [a, b] is given
by:

P (a ≤ x ≤ b) =

∫ b

a

1dx = x]
b
a = b − a

So, if X has the uniform distribution, the probability that a ≤ X ≤ b is

just the length of the interval [a, b].
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The Uniform Distribution

Example: Suppose X has the uniform distribution.

Find the probability that 0.2 ≤ X ≤ 0.5.
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The Uniform Distribution

Example: Suppose X has the uniform distribution.

Find the probability that 0.2 ≤ X ≤ 0.5.

Solution: The probability is given by

P (0.2 ≤ X ≤ 0.5) =

∫

0.5

0.2

1dx = x]
0.5
0.2 = 0.5 − 0.2 = 0.3
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The Uniform Distribution

Example: Suppose X has the uniform distribution.

Find the probability that X ≤ 0.7.
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The Uniform Distribution

Example: Suppose X has the uniform distribution.

Find the probability that X ≤ 0.7.

Solution: The probability is given by:

P (X ≤ 0.7) =

∫

0.7

0

1dx = x]
0.7
0

= 0.7
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Continuous Cumulative Distribution Functions

Definition: (3.4.3) The cumulative distribution function (cdf) of a
continuous random variable X is defined to be

FX(x) =

∫ x

−∞

fX(r)dr = P (X ≤ x)
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Continuous Cumulative Distribution Functions

Definition: (3.4.3) The cumulative distribution function (cdf) of a
continuous random variable X is defined to be

FX(x) =

∫ x

−∞

fX(r)dr = P (X ≤ x)

Note that outside of its support, the integral of the density function is
zero.

So, while stating the lower limit of integration as −∞ produces the most

general answer, in practice we can ignore values outside the support of

fX(x).
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Continuous Cumulative Distribution Functions

Example: Suppose the random variable X has the uniform
distribution. what is its cdf?
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Continuous Cumulative Distribution Functions

Example: Suppose the random variable X has the uniform
distribution. what is its cdf?

FX(x) =

∫ x

−∞

1dr
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Continuous Cumulative Distribution Functions

Example: Suppose the random variable X has the uniform
distribution. what is its cdf?

FX(x) =

∫ x

−∞

1dr

Since fX(x) only has support on [0, 1], we can ignore the rest of the
real line, so

FX(x) =

∫ x

0

1dr = r]x
0

= x = P (X ≤ x)
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Relationship Between the pdf and cdf

Recall the definition of the cdf,

FX(x) =

∫ x

−∞

fX(r)dr = P (X ≤ x)
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Relationship Between the pdf and cdf

Recall the definition of the cdf,

FX(x) =

∫ x

−∞

fX(r)dr = P (X ≤ x)

It follows immediately from the Fundamental Theorem of Calculus that:

Theorem: (3.4.1) Let FX(x) be the cdf of a continuous random
variable X . Then

d

dx
FX(x) = fX(x)
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Relationship Between the pdf and cdf

Recall the definition of the cdf,

FX(x) =

∫ x

−∞

fX(r)dr = P (X ≤ x)

It follows immediately from the Fundamental Theorem of Calculus that:

Theorem: (3.4.1) Let FX(x) be the cdf of a continuous random
variable X . Then

d

dx
FX(x) = fX(x)

That is, the derivative of a continuous cumulative distribution function is

the corresponding probability density function.
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Theorems involving the cdf

Theorem: (3.4.2) Let X be a continuous random variable with cdf
FX(x).

Then:
a) P (X > s) = 1 − FX(s)
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Theorems involving the cdf

Theorem: (3.4.2) Let X be a continuous random variable with cdf
FX(x).

Then:
a) P (X > s) = 1 − FX(s)

b) P (r < X ≤ s) = FX(s) − FX(r)
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Theorems involving the cdf

Theorem: (3.4.2) Let X be a continuous random variable with cdf
FX(x).

Then:
a) P (X > s) = 1 − FX(s)

b) P (r < X ≤ s) = FX(s) − FX(r)

c) lim
x→∞

FX(x) = 1
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Theorems involving the cdf

Theorem: (3.4.2) Let X be a continuous random variable with cdf
FX(x).

Then:
a) P (X > s) = 1 − FX(s)

b) P (r < X ≤ s) = FX(s) − FX(r)

c) lim
x→∞

FX(x) = 1

d) lim
x→−∞

FX(s) = 0
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Linear Transforms of Continuous Random Variables

Theorem: (3.4.3) Let X be a continuous random variable with pdf

fX(x)
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Linear Transforms of Continuous Random Variables

Theorem: (3.4.3) Let X be a continuous random variable with pdf

fX(x)

Suppose that Y is a random variable related to X by

Y = aX + b
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Linear Transforms of Continuous Random Variables

Theorem: (3.4.3) Let X be a continuous random variable with pdf

fX(x)

Suppose that Y is a random variable related to X by

Y = aX + b

Then the probability density function of Y is

fY (y) =
1

|a|
fX

(

y − b

a

)
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Linear Transforms of Continuous Random Variables

Example: Most calculators and mathematical software packages have
a function to simulate a continuous random variable with the uniform
distribution.

Often, this function is called rand
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Linear Transforms of Continuous Random Variables

Example: Most calculators and mathematical software packages have
a function to simulate a continuous random variable with the uniform
distribution.

Often, this function is called rand

Suppose instead we are choosing a real number at random from the
interval [3, 7].
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Linear Transforms of Continuous Random Variables

Example: Most calculators and mathematical software packages have
a function to simulate a continuous random variable with the uniform
distribution.

Often, this function is called rand

Suppose instead we are choosing a real number at random from the
interval [3, 7].

Most calculators would not have this function built in, but we can
produce the same result by drawing a number randomly from [0, 1],
multiplying it by 4, and adding 3:

Y = 4X + 3
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Linear Transforms of Continuous Random Variables

Theorem 3.4.3 says that the probability density function of Y = 4X + 3
will be given by:

fY (y) =
1

|4|
fX

(

y − 3

4

)

, 3 ≤ y ≤ 7
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Linear Transforms of Continuous Random Variables

Theorem 3.4.3 says that the probability density function of Y = 4X + 3
will be given by:

fY (y) =
1

|4|
fX

(

y − 3

4

)

, 3 ≤ y ≤ 7

But,

3 ≤ y ≤ 7 ⇒ 0 ≤
y − 3

4
≤ 1
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Linear Transforms of Continuous Random Variables

Theorem 3.4.3 says that the probability density function of Y = 4X + 3
will be given by:

fY (y) =
1

|4|
fX

(

y − 3

4

)

, 3 ≤ y ≤ 7

But,

3 ≤ y ≤ 7 ⇒ 0 ≤
y − 3

4
≤ 1

For these values, fX(x) = 1, so by substitution fY (y) reduces to:

fY (y) =
1

|4|
· 1 =

1

4
, 3 ≤ y ≤ 7

Larson and Marx Section 3.4 – p.18/21



Linear Transforms of Continuous Random Variables

Theorem 3.4.3 says that the probability density function of Y = 4X + 3
will be given by:

fY (y) =
1

|4|
fX

(

y − 3

4

)

, 3 ≤ y ≤ 7

But,

3 ≤ y ≤ 7 ⇒ 0 ≤
y − 3

4
≤ 1

For these values, fX(x) = 1, so by substitution fY (y) reduces to:

fY (y) =
1

|4|
· 1 =

1

4
, 3 ≤ y ≤ 7

Generalizations of the uniform distribution that arise in this way are
called a rectangular distributions.
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Other Examples of pdfs

Consider the probability density function

fX(x) = 2x, 0 ≤ x ≤ 1
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Other Examples of pdfs

Consider the probability density function

fX(x) = 2x, 0 ≤ x ≤ 1

This is indeed a pdf, since fX(x) ≥ 0 everywhere, and, following the
convention that outside of its support, the interval [0, 1], we assume
fX(x) = 0,

∫

∞

−∞

fX(x) =

∫

1

0

2xdx =
2x2

2

]1

0

= 1
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Other Examples of pdfs

Consider the probability density function

fX(x) = 2x, 0 ≤ x ≤ 1

This is indeed a pdf, since fX(x) ≥ 0 everywhere, and, following the
convention that outside of its support, the interval [0, 1], we assume
fX(x) = 0,

∫

∞

−∞

fX(x) =

∫

1

0

2xdx =
2x2

2

]1

0

= 1

The cdf for this probability distribution is

FX(x) =

∫ x

0

fX(r)dr =
2r2

2

]x

0

= x2, 0 ≤ x ≤ 1
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Other Examples of pdfs

The probability distribution with pdf

fX(x) =
1

µ
e−x/µ, 0 ≤ x

is called the exponential distribution and plays an important role in
failure analysis and queueing theory.
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Other Examples of pdfs

The probability distribution with pdf

fX(x) =
1

µ
e−x/µ, 0 ≤ x

is called the exponential distribution and plays an important role in
failure analysis and queueing theory.

Clearly fX(x) ≥ 0 everywhere, and, since

∫ t

0

1

µ
e−x/µdx = −

µe−x/µ

µ

]t

0

= 1 − e−t/µ

As t → ∞, the integral approaches 1.
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Other Examples of pdfs

The probability distribution with pdf

fX(x) =
1

µ
e−x/µ, 0 ≤ x

is called the exponential distribution and plays an important role in
failure analysis and queueing theory.

Clearly fX(x) ≥ 0 everywhere, and, since

∫ t

0

1

µ
e−x/µdx = −

µe−x/µ

µ

]t

0

= 1 − e−t/µ

As t → ∞, the integral approaches 1.

The cdf is

FX(x) =

∫ x

0

1

µ
e−r/µdr = 1 − e−x/µ, 0 ≤ x
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Failure Analysis Example

Suppose the time to failure of a light bulb has an exponential
distribution with µ = 500 (hours). Then the pdf of the time to failure is:

fX(x) =
1

500
e−x/500, 0 ≤ x

What is the probability that a given light bulb lasts less than 400 hours?
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Failure Analysis Example

Suppose the time to failure of a light bulb has an exponential
distribution with µ = 500 (hours). Then the pdf of the time to failure is:

fX(x) =
1

500
e−x/500, 0 ≤ x

What is the probability that a given light bulb lasts less than 400 hours?

The cdf is
FX(x) = = 1 − e−x/500, 0 ≤ x

so
P (X ≤ 400) = FX(400) = 1 − e−400/500 = 0.551
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Failure Analysis Example

Again suppose the time to failure of a light bulb has an exponential
distribution with µ = 500 (hours).

What is the probability that a given light bulb lasts more than 600
hours?
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Failure Analysis Example

Again suppose the time to failure of a light bulb has an exponential
distribution with µ = 500 (hours).

What is the probability that a given light bulb lasts more than 600
hours?

The probability that it lasts 600 hours or less is FX(600), so the
probability that it lasts longer than 600 hours is

1 − P (X ≤ 600) = 1 − FX(600) = 1 − (1 − e−600/500) = 0.301
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