Larson and Marx Section 3.3

Gene Quinn

Discrete Probability Functions

Suppose S is a sample space which is either finite or countably infinite. Then we have the following definition:

Definition: A **discrete probability function** *p* is a real-valued function defined for any element of *S* such that:

a. $0 \le p(s)$ for each $s \in S$

b.
$$\sum_{\mathsf{all}_{s \in S}} p(s) = 1$$

Discrete Probability Functions

Suppose S is a sample space which is either finite or countably infinite. Then we have the following definition:

Definition: A **discrete probability function** p is a real-valued function defined for any element of S such that:

a. $0 \le p(s)$ for each $s \in S$

b.
$$\sum_{\mathsf{all}_{s \in S}} p(s) = 1$$

With this definition, the probabilities of events will satisfy the Kolmogorov axioms.

Discrete Random Variables

Definition:

A **discrete random variable** is a *function* whose domain is a sample space *S* and whose values form a finite or countably infinite set of real numbers.

Discrete Random Variables

Definition:

- A **discrete random variable** is a *function* whose domain is a sample space *S* and whose values form a finite or countably infinite set of real numbers.
- Random variables are denoted by upper case letters: X, Y

Discrete Random Variables

Definition:

- A **discrete random variable** is a *function* whose domain is a sample space *S* and whose values form a finite or countably infinite set of real numbers.
- Random variables are denoted by upper case letters: X, Y
- Random variables replace outcomes with real numbers, and generally result in a much smaller "sample space".

Definition:

The **probability density function** or pdf of a random variable X, $p_X(k)$ is defined by

 $p_X(k) = P(s \in S \mid X(s) = k)$

Definition:

The **probability density function** or pdf of a random variable X, $p_X(k)$ is defined by

$$p_X(k) = P(s \in S \mid X(s) = k)$$

The value of $p_X(k)$ is simply the probability that the random variable X assumes the value k.

Definition:

The **probability density function** or pdf of a random variable X, $p_X(k)$ is defined by

$$p_X(k) = P(s \in S \mid X(s) = k)$$

The value of $p_X(k)$ is simply the probability that the random variable X assumes the value k.

Usually the simpler notation which omits explicit reference to \boldsymbol{s} and \boldsymbol{S} is used,

$$p_X(k) = P(X = k)$$

Every discrete random variable X has an associated probability density function (pdf).

Every discrete random variable X has an associated probability density function (pdf).

The value of the pdf is defined to be zero for any value of k that is not in the range of X.

Binomial Probability Density Function

Example If X is a random variable having the binomial distribution, then

$$p_X(k) = P(X = k) = {\binom{n}{k}} p^k (1-p)^{n-k}, \quad k = 0, 1, \dots, n$$

Hypergeometric Probability Density Function

Example If X is a random variable having the binomial distribution, then

$$p_X(k) = P(X = k) = \frac{\binom{r}{k}\binom{w}{n-k}}{\binom{r+w}{n}}$$

for values of k for which all quantities are defined.

Definition:

The **cumulative distribution function** (cdf) of a discrete random variable X, $F_X(t)$ is the probability that X assumes a value less than or equal to t:

 $F_X(t) = P(s \in S \mid X(s) \le t)$

Definition:

The **cumulative distribution function** (cdf) of a discrete random variable X, $F_X(t)$ is the probability that X assumes a value less than or equal to t:

$$F_X(t) = P(s \in S \mid X(s) \le t)$$

As before the simpler notation which omits explicit reference to \boldsymbol{s} and \boldsymbol{S} is used,

$$F_X(t) = P(X \le t)$$

Definition:

The **cumulative distribution function** (cdf) of a discrete random variable X, $F_X(t)$ is the probability that X assumes a value less than or equal to t:

$$F_X(t) = P(s \in S \mid X(s) \le t)$$

As before the simpler notation which omits explicit reference to \boldsymbol{s} and \boldsymbol{S} is used,

$$F_X(t) = P(X \le t)$$

Example: Suppose the random variable X represents the number of successes in 10 independent trials each with a probability of success equal to 0.4.

The probability of 2 or fewer successes is:

$$F_X(2) = P(X \le 2) = \sum_{k=0}^2 \binom{10}{k} (.4)^k (.6)^{10-k}$$

Linear Transformations

Theorem: (3.3.1) Suppose *X* is a discrete random variable with associated probability density function $p_X(x)$, and for some constants *a* and *b*, the random variable *Y* is defined by

$$Y = aX + b$$

Then the probability density function $p_Y(y)$ associated with Y is

$$p_Y(y) = P(Y = y) = P(y = aX + b) = P\left(X = \frac{y - b}{a}\right) = p_X\left(\frac{y - b}{a}\right)$$