

Gene Quinn

Conditional pdf of a Discrete Random Variable

Definition: (3.11.1) Let X and Y are discrete random variables. The conditional probability density function of Y given that $X=x$ is given by:

$$
p_{Y \mid x}=P(Y=y \mid X=x)=\frac{p_{X Y}(x, y)}{p_{X}(x)}
$$

for $p_{X}(x) \neq 0$.

Conditional pdf of a Discrete Random Variable

Note that the definition generalizes to the case of more than two random variables.

Conditional pdf of a Discrete Random Variable

Note that the definition generalizes to the case of more than two random variables.

If X, Y, and Z are discrete random variables with joint pdf
$P_{X Y Z}(x, y, z)$, the joint conditional pdf of X and Y given that $Z=z$ is:

$$
p_{X Y \mid z}(x, y)=\frac{p_{X Y Z}(x, y, z)}{p_{Z}(z)}
$$

Conditional pdf of a Discrete Random Variable

Note that the definition generalizes to the case of more than two random variables.

If X, Y, and Z are discrete random variables with joint pdf
$P_{X Y Z}(x, y, z)$, the joint conditional pdf of X and Y given that $Z=z$ is:

$$
p_{X Y \mid z}(x, y)=\frac{p_{X Y Z}(x, y, z)}{p_{Z}(z)}
$$

It is also possible to condition on more than one variable. If X, Y, and Z are discrete random variables with joint pdf $P_{X Y Z}(x, y, z)$, and the joint (marginal) pdf of Y and Z is $P_{Y Z}(y, z)$, the conditional pdf of X given that $Y=y$ and $Z=z$ is:

$$
p_{X \mid y z}(x)=\frac{p_{X Y Z}(x, y, z)}{p_{Y Z}(y, z)}
$$

Conditional pdf of a Continuous Random Variable

Definition: (3.11.1) Let X and Y are continuous random variables. The conditional probability density function of Y given that $X=x$ is given by:

$$
f_{Y \mid x}=\frac{f_{X Y}(x, y)}{f_{X}(x)}
$$

Conditional pdf of a Continuous Random Variable

Definition: (3.11.1) Let X and Y are continuous random variables. The conditional probability density function of Y given that $X=x$ is given by:

$$
f_{Y \mid x}=\frac{f_{X Y}(x, y)}{f_{X}(x)}
$$

This definition follows from the derivation of the "conditional" cdf, defined by

$$
P(Y \leq y \mid X=x)=\int_{-\infty}^{y} \frac{f_{X Y}(x, u)}{f_{X}(x)} d u
$$

