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Random Variables

Given a sample space 5, we have defined probabilities in terms of a
probability function that maps the power set P(S) into the real numbers

P:P(S)— R

In a way that is consistent with the Kolmogorov axioms.
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Random Variables

Example:

Six dice are thrown. By the multiplication rule, there are

6:-6-6-6-6-6 = 46,656

distinct outcomes in the sample space.
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Random Variables

One way we can "simplify" a sample space with 46, 656 elements down
to one with 31 mutually exclusive outcomes is to define a function from
the original sample space into the numbers from 6 to 36.

Every outcome from the original sample space is mapped into exactly
one number in the set {6,7,...,35,36}.
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Random Variables

When we say that the function is defined on a sample space, what we
mean is that the independent variable is a point in a sample space, i.e.,
the outcome of an experiment.
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the outcome of an experiment.

The choice of the term random variable is somewhat misleading
since it is, in fact, a function.
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Random Variables

Compounding the confusion resulting from calling a random function a
random variable is the standard notation for random variables.
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random variable is the standard notation for random variables.

A random variable is usually designated by an upper case alphabetic
character, often in bold type:
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Random Variables

Compounding the confusion resulting from calling a random function a
random variable is the standard notation for random variables.

A random variable is usually designated by an upper case alphabetic
character, often in bold type:

X =17
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Random Variables

If we think of X as a function defined on S (which it is),

X:8— {6,7,...,35,36)

we could write
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Random Variables

If we think of X as a function defined on S (which it is),

X:8— {6,7,...,35,36)

we could write

X(s) =17
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Random Variables - Notation

Suppose X is a random variable.

Let
R = {$1,$2,$3, .. }

be the set of values which X can assume.
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Random Variables - Notation

Suppose X is a random variable.

Let
R = {:1:1,3:2,1'3, g }

be the set of values which X can assume.
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Random Variables - Notation

For any element of R, say
x, € R,

the collection of all sample points on which X assumes the value z;
constitutes the event that

X:J?i
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The Probability Distribution

Definition:

The function
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The Probability Distribution

If a function f is a probability distribution, the values it assumes are
[textitprobabilities.

Consequently, a probability distribution function can assume only
nonnegative values:

flzs)) = 0 Vi

Larson and Marx Section 3.1 — p.11/1



The Probability Distribution

If a function f is a probability distribution, the values it assumes are
[textitprobabilities.

Consequently, a probability distribution function can assume only
nonnegative values:

flzs)) = 0 Vi

Larson and Marx Section 3.1 — p.11/1



Example: The Binomial Distribution

An experiment consists of tossing 3 coins, or, equivalently, tossing the
same coin 3 times.

We are interested in the number of heads obtained.
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Example: The Binomial Distribution

An experiment consists of tossing 3 coins, or, equivalently, tossing the
same coin 3 times.

We are interested in the number of heads obtained.

We define a random variable X representing the number of heads.
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Example: The Binomial Distribution

The event
X =2

will occur if the experiment produces one of the outcomes

{t,h,h}, {h,t,h}, {h,h,t}
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Example: The Binomial Distribution

We will define f by the following table:

(0 — P(X=0)

Sl

f: X —[0,1] such that < L = PX=1)
2 — Plx=2)

3 — Plx=3
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Example: The Binomial Distribution

If the coin is fair, each of the eight outcomes in the sample space S
has probability 1/8, so we expect the following probabilities for the
random variable X

—~ P(X=0) = 1/8
1) = 3/8

f: X +—[0,1] such that

Larson and Marx Section 3.1 — p.15/1



Example: The Binomial Distribution

If the coin is fair, each of the eight outcomes in the sample space S
has probability 1/8, so we expect the following probabilities for the
random variable X

f: X +—[0,1] such that
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Example: The Binomial Distribution

Suppose instead of a coin toss, we considered an experiment with two
possible outcomes that are not necessarily equally likely.
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Example: The Binomial Distribution

Our experiment now had two outcomes, "success" and "failure".
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Example: The Binomial Distribution

Our experiment now had two outcomes, "success" and "failure".

We define a random variable X representing the number of successes.
Actually, X is a function from the sample space S into the set
A =10,1, 2,3}, defined by the following table:
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