

Gene Quinn

Combinatorial Probability

We have seen that combinatorics deals with counting.
We have also seen that, if the sample space S consists of n equally likely outcomes, for any $A \subseteq S$, the probability function is

$$
P(A)=\frac{N(A)}{N(S)}
$$

Combinatorial Probability

We have seen that combinatorics deals with counting.
We have also seen that, if the sample space S consists of n equally likely outcomes, for any $A \subseteq S$, the probability function is

$$
P(A)=\frac{N(A)}{N(S)}
$$

In many problems that arise in probability, $N(A)$ and $N(S)$ are obtained using combinatorics and/or the multiplication rule.

Stirling's Formula

n ! grows so fast as n increases that it can quickly exceed the maximum integer that a computer or calculator can store.

Stirling's Formula

n ! grows so fast as n increases that it can quickly exceed the maximum integer that a computer or calculator can store.

An approximation known as Striling's Formula can be used to calculate n ! approximately for large n. Stirling's formula is:

$$
n!\approx \sqrt{2 \pi} n^{n+1 / 2} e^{-n}
$$

Stirling's Formula

n ! grows so fast as n increases that it can quickly exceed the maximum integer that a computer or calculator can store.

An approximation known as Striling's Formula can be used to calculate n ! approximately for large n. Stirling's formula is:

$$
n!\approx \sqrt{2 \pi} n^{n+1 / 2} e^{-n}
$$

which is usually written in $\log _{10}$ form as

$$
\log _{10}(n!) \approx \log _{10}(\sqrt{2 \pi})+\left(n+\frac{1}{2}\right) \log _{10}(n)-\log _{10}(e)
$$

Probability of a Flush in Poker

A flush in poker is a hand of 5 cards all in the same suit.
Problem: A five card poker hand is dealt. What is the probability that it is a flush?

Probability of a Flush in Poker

A flush in poker is a hand of 5 cards all in the same suit.
Problem: A five card poker hand is dealt. What is the probability that it is a flush?

Solution: For each of the four suits, there are

$$
\binom{13}{5}
$$

flushes. Since there are 52 choose 5 hands, the probability of a flush is

$$
\frac{4 \cdot\binom{13}{5}}{\binom{52}{5}}=\frac{4 \cdot 1287}{2,598,960}=.00198
$$

