Combinatorics
Gene Quinn

The Multiplication Rule

Multiplication Rule: If operation A can be performed m different ways, and operation B can be performed n different ways, then the sequence

$$
\text { (operation } A \text {, operation } B \text {) }
$$

can be performed in $m \cdot n$ different ways.

Corollary to the Multiplication Rule

Corollary: If for some positive integer k the operations

$$
\left\{A_{1}, A_{2}, \ldots A_{k}\right\}
$$

can be performed in

$$
\left\{n_{1}, n_{2}, \ldots n_{k}\right\}
$$

ways, respectively, then the ordered sequence

$$
\text { (operation } A_{1} \text {, operation } A_{2}, \ldots, \text { operation } A_{k} \text {) }
$$

can be performed in

$$
n_{1} \cdot n_{2} \cdots n_{k}
$$

ways.

Permutations

Definition: An ordered arrangement of length k of objects from a finite collection is called a permutation

Permutations

Definition: An ordered arrangement of length k of objects from a finite collection is called a permutation
If the collection from which the objects are taken has n elements, the permutation of length k is denoted by

$$
{ }_{n} P_{k}
$$

Permutations

Definition: An ordered arrangement of length k of objects from a finite collection is called a permutation
If the collection from which the objects are taken has n elements, the permutation of length k is denoted by

$$
{ }_{n} P_{k}
$$

Theorem: (2.6.1) The number of permutations of length k that can be formed from a set of n distinct elements, with repetitions not allowed, is

$$
{ }_{n} P_{k}=n(n-1)(n-2) \cdots(n-k+1)=\frac{n!}{(n-k)!}
$$

Permutations of Non-distinct Objects

Theorem: (2.6.2) The number of ways to arrange n objects with n_{1} being of kind $1, n_{2}$ being of kind $2, \ldots$, and n_{k} being of kind k is

$$
\frac{n!}{n_{1}!n_{2}!\cdots n_{k}!}
$$

where

$$
\sum_{i}=1^{n} n_{i}=n
$$

Combinations

If we choose k of n distinct objects with order being important, we have seen that there are

$$
{ }_{n} P_{k}=\frac{n!}{(n-k)!} \quad \text { permutations }
$$

In many applications, order is not important.
For example, if we want to know the number of poker hands, it should be the number of 5 member subsets of a standard deck of 52 cards.

In this case, the order in which the cards are drawn is irrelevant.

Combinations

There is an easy way to determine this number once we know that there are

$$
{ }_{52} P_{5}=\frac{52!}{(52-5)!}=52 \cdot 51 \cdot 50 \cdot 49 \cdot 48
$$

permutations with 5 cards.

Combinations

There is an easy way to determine this number once we know that there are

$$
{ }_{52} P_{5}=\frac{52!}{(52-5)!}=52 \cdot 51 \cdot 50 \cdot 49 \cdot 48
$$

permutations with 5 cards.
Since each subset of 5 cards can be arranged in

$$
{ }_{5} P_{5}=\frac{5!}{(5-5)!}=\frac{5!}{0!}=5!
$$

ways, to get the number of subsets, we should divide the number of permutations by 5 ! to get:

$$
\frac{52!}{5!}(52-5)!
$$

Combinations

This construct

$$
\frac{52!}{5!(52-5)!}
$$

occurs so often it is given two symbols:

$$
{ }_{52} C_{5} \text { and }\binom{52}{5}
$$

and referred to as the number of combinations of 52 things taken 5 at a time.

Combinations

Theorem: (2.6.3) The number of ways to form combinations of size k from a set of n distinct objects, with no repetitions, is given by

$$
{ }_{n} C_{k}=\binom{n}{k}=\frac{n!}{k!(n-k)!}
$$

occurs so often it is given two symbols:

$$
{ }_{52} C_{5} \text { and }\binom{52}{5}
$$

and referred to as the number of combinations of 52 things taken 5 at a time.

Combinations

The symbol

$$
\binom{n}{k}
$$

is also read as:
n things taken k at a time
or
n choose k

Poker Hands

Example:

How many 5-card poker hands are possible using a 52 card deck?

Poker Hands

Example:

How many 5 -card poker hands are possible using a 52 card deck?
The number of poker hands is
"52 things taken 5 at a time"
or
"52 choose 5":

Poker Hands

Example:

How many 5 -card poker hands are possible using a 52 card deck?
The number of poker hands is
"52 things taken 5 at a time"
or
"52 choose 5":
This is given by:

$$
\binom{52}{5}=\frac{52!}{5!(52-5)!}
$$

Poker Hands

Computationally, this is

$$
\binom{52}{5}=\frac{52!}{5!(52-5)!}=\frac{52!}{5!\cdot 47!}
$$

Poker Hands

Computationally, this is

$$
\begin{aligned}
& \binom{52}{5}=\frac{52!}{5!(52-5)!}=\frac{52!}{5!\cdot 47!} \\
& =\frac{(52 \cdot 51 \cdot 50 \cdot 49 \cdot 48) \cdot 47!}{5!\cdot 47!}
\end{aligned}
$$

Poker Hands

Computationally, this is

$$
\begin{gathered}
\binom{52}{5}=\frac{52!}{5!(52-5)!}=\frac{52!}{5!\cdot 47!} \\
=\frac{(52 \cdot 51 \cdot 50 \cdot 49 \cdot 48) \cdot 47!}{5!\cdot 47!} \\
=\frac{52 \cdot 51 \cdot 50 \cdot 49 \cdot 48}{5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}
\end{gathered}
$$

Poker Hands

The factors can be rearranged to produce:

$$
=\left(\frac{52}{4}\right)\left(\frac{51}{3}\right)\left(\frac{50}{5}\right)\left(\frac{49}{1}\right)\left(\frac{48}{2}\right)
$$

Poker Hands

The factors can be rearranged to produce:

$$
=\left(\frac{52}{4}\right)\left(\frac{51}{3}\right)\left(\frac{50}{5}\right)\left(\frac{49}{1}\right)\left(\frac{48}{2}\right)
$$

$$
13 \cdot 17 \cdot 10 \cdot 49 \cdot 24
$$

Poker Hands

The factors can be rearranged to produce:

$$
=\left(\frac{52}{4}\right)\left(\frac{51}{3}\right)\left(\frac{50}{5}\right)\left(\frac{49}{1}\right)\left(\frac{48}{2}\right)
$$

$$
\begin{gathered}
13 \cdot 17 \cdot 10 \cdot 49 \cdot 24 \\
\quad=2,598,960
\end{gathered}
$$

Bridge Hands

Example:

How many 13-card bridge hands are possible using a 52 card deck?

Bridge Hands

Example:

How many 13 -card bridge hands are possible using a 52 card deck?
The number of bridge hands is
"52 things taken 13 at a time" or

$$
\binom{52}{13}=\frac{52!}{13!(52-13)!}
$$

Bridge Hands

Example:

How many 13 -card bridge hands are possible using a 52 card deck?
The number of bridge hands is
"52 things taken 13 at a time" or

$$
\binom{52}{13}=\frac{52!}{13!(52-13)!}
$$

After some computation, this reduces to

$$
=635,013,559,600
$$

Lottery Tickets

Suppose a lottery game consists of choosing 6 numbers from the set

$$
\{1,2,3,4, \ldots, 35,36\}
$$

How many different choices can be made?

Lottery Tickets

Suppose a lottery game consists of choosing 6 numbers from the set

$$
\{1,2,3,4, \ldots, 35,36\}
$$

How many different choices can be made?
The answer is 36 choose 6 , or

$$
\binom{36}{6}=\frac{36!}{6!(36-6)!}
$$

Lottery Tickets

Suppose a lottery game consists of choosing 6 numbers from the set

$$
\{1,2,3,4, \ldots, 35,36\}
$$

How many different choices can be made?
The answer is 36 choose 6 , or

$$
\binom{36}{6}=\frac{36!}{6!(36-6)!}
$$

$$
=\frac{36 \cdot 35 \cdot 34 \cdot 33 \cdot 32 \cdot 31}{6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}=6 \cdot 7 \cdot 17 \cdot 11 \cdot 8 \cdot 31=1,947,792
$$

Simple Random Samples

Suppose a sample of size n is drawn randomly from a population of N objects.

How many possible samples are there?

Simple Random Samples

Suppose a sample of size n is drawn randomly from a population of N objects.

How many possible samples are there?
Since order is not important, we want the number of combinations of N things taken n at a time:

$$
\text { number of samples }=\binom{N}{n}
$$

Simple Random Samples

Suppose a sample of size n is drawn randomly from a population of N objects.

How many possible samples are there?
Since order is not important, we want the number of combinations of N things taken n at a time:

$$
\text { number of samples }=\binom{N}{n}
$$

A sampling scheme is called a simple random sample if each of the possible samples has an equal chance of being selected.

Binomial Coefficients

When a binomial expression

$$
(a+b)
$$

is raised to a power n, the result is a sum of $n+1$ terms

$$
C_{k} \cdot a^{k} b^{n-k}, \quad k=0,1,2, \ldots, n
$$

where the C_{k} are constants.

Binomial Coefficients

When a binomial expression

$$
(a+b)
$$

is raised to a power n, the result is a sum of $n+1$ terms

$$
C_{k} \cdot a^{k} b^{n-k}, \quad k=0,1,2, \ldots, n
$$

where the C_{k} are constants.
It turns out that for $k=0,1, \ldots, n$,

$$
C_{k}=\binom{n}{k}
$$

Binomial Coefficients

When a binomial expression

$$
(a+b)
$$

is raised to a power n, the result is a sum of $n+1$ terms

$$
C_{k} \cdot a^{k} b^{n-k}, \quad k=0,1,2, \ldots, n
$$

where the C_{k} are constants.
It turns out that for $k=0,1, \ldots, n$,

$$
C_{k}=\binom{n}{k}
$$

Binomial Coefficients

Written as a summation,

$$
(a+b)^{n}=\sum_{k=0}^{n}\binom{n}{k} a^{n-k} b^{k}
$$

$$
=\binom{n}{0} a^{n} b^{0}+\binom{n}{1} a^{n-1} b+\binom{n}{2} a^{n-2} b^{2}+\cdots+\binom{n}{n-1} a b^{n-1}+\binom{n}{n} a^{0} b^{n}
$$

Binomial Coefficients

Problem: Find the coefficient of x^{30} in the expansion of

$$
(1+x)^{35}
$$

Binomial Coefficients

Problem: Find the coefficient of x^{30} in the expansion of

$$
(1+x)^{35}
$$

Answer: In the expansion of $(1+x)^{n}$, for any $k \in\{0,1,2, \ldots, n\}$, the coefficient of x^{k} is

$$
\binom{n}{k}
$$

So, the coefficient of x^{30} is

$$
\begin{gathered}
\binom{35}{30}=\frac{35!}{30!\cdot 5!}=\frac{35 \cdot 34 \cdot 33 \cdot 32 \cdot 31}{5 \cdot 4 \cdot 3 \cdot 2 \cdot 1} \\
=7 \cdot 17 \cdot 11 \cdot 8 \cdot 31=324,632
\end{gathered}
$$

Binomial Coefficients

For the special case $a=b=1$,

$$
2^{n}=(1+1)^{n}=\sum_{k=0}^{n}\binom{n}{k}
$$

Binomial Coefficients

For the special case $a=b=1$,

$$
2^{n}=(1+1)^{n}=\sum_{k=0}^{n}\binom{n}{k}
$$

This produces the identity:

$$
2^{n}=\binom{n}{0}+\binom{n}{1}+\binom{n}{2}+\cdots+\binom{n}{n-1}+\binom{n}{n}
$$

