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The Multiplication Rule

Multiplication Rule: If operation A can be performed m different ways,
and operation B can be performed n different ways, then the sequence

(operation A, operation B)

can be performed in m - n different ways.
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Corollary to the Multiplication Rule

Corollary: If for some positive integer k the operations
{A1, Aa, ... Ax}

can be performed in

{nl,ng, .. nk}
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Permutations

Definition: An ordered arrangement of length & of objects from a finite
collection is called a permutation
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If the collection from which the objects are taken has n elements, the
permutation of length £ is denoted by

nPk:
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Permutations of Non-distinct Objects

Theorem: (2.6.2) The number of ways to arrange n objects with n
being of kind 1, ny being of kind 2,. . ., and n; being of kind & is

n!

n1!n2! .- nk'

where

Combinatorics — p.5/2



Combinations

If we choose k& of n distinct objects with order being important, we have
seen that there are

n!

nlr = ——=
" (n—k)

permutations

In many applications, order is not important.
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Combinations

There is an easy way to determine this number once we know that

there are
P- = g2 =52-51-50-49 .48
220 T (52 —B)

permutations with 5 cards.
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Combinations

This construct
52!

51(52 — 5)!

occurs so often it is given two symbols:
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Combinations

Theorem: (2.6.3) The number of ways to form combinations of size k
from a set of n distinct objects, with no repetitions, is given by

n n!
nC = (k) "kl (n—k)!

occurs so often it is given two symbols:
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Combinations

The symbol

IS also read as:

n things taken k at a time
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Poker Hands

Example:

How many 5-card poker hands are possible using a 52 card deck?
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Poker Hands

Example:

How many 5-card poker hands are possible using a 52 card deck?

The number of poker hands is

"52 things taken 5 at a time"
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Poker Hands

Computationally, this is

52 52! 52
5) 5!1(52—5)  5!-47!
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Poker Hands

The factors can be rearranged to produce:

@EEEE
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Bridge Hands

Example:

How many 13-card bridge hands are possible using a 52 card deck?

Combinatorics — p.14/2



Bridge Hands

Example:

How many 13-card bridge hands are possible using a 52 card deck?

The number of bridge hands is

"52 things taken 13 at a time" or
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Example:

How many 13-card bridge hands are possible using a 52 card deck?
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Lottery Tickets

Suppose a lottery game consists of choosing 6 numbers from the set

{1,2,3,4,...,35,36)

How many different choices can be made?
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Simple Random Samples

Suppose a sample of size n is drawn randomly from a population of N
objects.

How many possible samples are there?
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Simple Random Samples

Suppose a sample of size n is drawn randomly from a population of N
objects.

How many possible samples are there?

Since order is not important, we want the number of combinations of NV
things taken n at a time:
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Binomial Coefficients

When a binomial expression
(a+0)

IS raised to a power n, the result is a sum of n + 1 terms
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Binomial Coefficients

When a binomial expression
(a+0)

IS raised to a power n, the result is a sum of n + 1 terms

Cp-a*b" % k=0,1,2,....n
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Binomial Coefficients

Written as a summation,

(a+b)" = (Z) a" R bk
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Binomial Coefficients

Problem: Find the coefficient of 23° in the expansion of

(1 i 33)35
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Binomial Coefficients

Problem: Find the coefficient of 23° in the expansion of

(1 +z)%°

Answer: In the expansion of (1 + x)", forany k£ € {0,1,2,...,n}, the
coefficient of " is
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Binomial Coefficients

For the special case a = b =1,

om=(1+1)" = n (Z)
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