Calculus Review: Multiple Integrals

Gene Quinn

The Univariate Case

The definite integral of a function $y=f(x)$ involves an interval $[a, b]$ on the real line. For example,

$$
\int_{0}^{1.2} \sqrt{x} d x
$$

The Bivariate Case

Many applications involve functions of more than one variable, so we need to generalize the integration process to cover functions of this type.
We start with a real-valued function of two variables, x and y,

$$
f:(x, y) \mapsto \mathbb{R}
$$

The Bivariate Case

The simplest generalization of the definite integral over an interval is the double integral over a rectangle R,

$$
R=\{(x, y): a \leq x \leq b \quad \text { and } \quad c \leq y \leq d
$$

denoted by:

$$
\iint_{R} f(x, y) d A
$$

where $d A$ represents an element of the area of the rectangle.

The Bivariate Case - Example

Suppose a bivariate function $f(x, y)$ is defined by:

$$
f(x, y)=1
$$

on the rectangle

$$
R=\{(x, y): 0 \leq x \leq 2 \quad \text { and } \quad 0 \leq y \leq 1 / 2\}
$$

The Bivariate Case - Example

Suppose a bivariate function $f(x, y)$ is defined by:

$$
f(x, y)=1
$$

on the rectangle

$$
R=\{(x, y): 0 \leq x \leq 2 \quad \text { and } \quad 0 \leq y \leq 1 / 2\}
$$

The double integral over the rectangle R

$$
\iint_{R} f(x, y) d A=\int_{0}^{2} \int_{0}^{\frac{1}{2}} 1 d y d x
$$

represents a volume in three dimensions.

The Bivariate Case - Example

In this case, the double integral represents the volume of a parallelepiped

$$
\int_{0}^{2} \int_{0}^{\frac{1}{2}} 1 d x d y
$$

Iterated Integrals - Fubini's Theorem

Fubini's Theorem addresses the problem of evaluating a double integral over a rectangle in the $x y$-plane.
Suppose $f(x, y)$ is defined on the rectangle

$$
R=\{(x, y): a \leq x \leq b \quad \text { and } \quad c \leq y \leq d\}
$$

Iterated Integrals - Fubini's Theorem

Fubini's theorem states that we can evaluate the double integral as two successive single integrals,

$$
\iint_{R} f(x, y) d A=\int_{a}^{b}\left(\int_{c}^{d} f(x, y) d y\right) d x
$$

Iterated Integrals - Fubini's Theorem

Fubini's theorem states that we can evaluate the double integral as two successive single integrals,

$$
\iint_{R} f(x, y) d A=\int_{a}^{b}\left(\int_{c}^{d} f(x, y) d y\right) d x
$$

and that the order of integration is not important:

$$
\iint_{R} f(x, y) d A=\int_{c}^{d}\left(\int_{a}^{b} f(x, y) d x\right) d y
$$

The Bivariate Case - Example

In our example, our parallelipiped has dimensions:

$$
\text { width }=2 \quad \text { length }=\frac{1}{2} \quad \text { height }=1
$$

so we can easily compute the volume as:

$$
V=2 \times \frac{1}{2} \times 1=1
$$

The Bivariate Case - Example

In our example, our parallelipiped has dimensions:

$$
\text { width }=2 \quad \text { length }=\frac{1}{2} \quad \text { height }=1
$$

so we can easily compute the volume as:

$$
V=2 \times \frac{1}{2} \times 1=1
$$

We can also compute the volume using Fubini's theorem,

$$
V=\int_{0}^{2}\left(\int_{0}^{\frac{1}{2}} 1 d y\right) d x
$$

The Bivariate Case - Example

To find

$$
V=\int_{0}^{2}\left(\int_{0}^{\frac{1}{2}} 1 d y\right) d x
$$

we first evaluate the inner integral,

$$
V=\int_{0}^{2}\left(\left.y\right|_{0} ^{\frac{1}{2}}\right) d x
$$

The Bivariate Case - Example

and obtain

$$
V=\int_{0}^{2} \frac{1}{2} d x
$$

The Bivariate Case - Example

and obtain

$$
V=\int_{0}^{2} \frac{1}{2} d x
$$

Now the second integration gives

$$
V=\int_{0}^{2} \frac{1}{2} d x=\left.\frac{1}{2} x\right|_{0} ^{2}=1
$$

