Calculus Review: Multiple Integrals

Gene Quinn

The Univariate Case

The definite integral of a function y = f(x) involves an interval [a, b] on the real line. For example,

The Bivariate Case

Many applications involve functions of more than one variable, so we need to generalize the integration process to cover functions of this type.

We start with a real-valued function of two variables, x and y,

 $f : (x, y) \mapsto \mathbb{R}$

The Bivariate Case

The simplest generalization of the definite integral over an interval is the **double integral** over a **rectangle** R,

 $R = \{(x, y) : a \le x \le b \text{ and } c \le y \le d\}$

denoted by:

$$\iint_R f(x,y) \, dA$$

where dA represents an element of the area of the rectangle.

Suppose a bivariate function f(x, y) is defined by:

f(x,y) = 1

on the rectangle

 $R = \{(x, y) : 0 \le x \le 2 \text{ and } 0 \le y \le 1/2 \}$

Suppose a bivariate function f(x, y) is defined by:

f(x,y) = 1

on the rectangle

$$R = \{(x, y) : 0 \le x \le 2 \text{ and } 0 \le y \le 1/2 \}$$

The double integral over the rectangle R

$$\iint_{R} f(x,y) \, dA \quad = \quad \int_{0}^{2} \int_{0}^{\frac{1}{2}} 1 \, dy \, dx$$

represents a volume in three dimensions.

In this case, the double integral represents the volume of a parallelepiped

Iterated Integrals - Fubini's Theorem

Fubini's Theorem addresses the problem of evaluating a double integral over a rectangle in the *xy*-plane.

Suppose f(x, y) is defined on the rectangle

$$R = \{(x, y) : a \le x \le b \text{ and } c \le y \le d \}$$

Iterated Integrals - Fubini's Theorem

Fubini's theorem states that we can evaluate the double integral as two successive single integrals,

$$\iint_{R} f(x,y) \, dA \quad = \quad \int_{a}^{b} \left(\int_{c}^{d} f(x,y) \, dy \right) \, dx$$

Iterated Integrals - Fubini's Theorem

Fubini's theorem states that we can evaluate the double integral as two successive single integrals,

$$\iint_{R} f(x,y) \, dA \quad = \quad \int_{a}^{b} \left(\int_{c}^{d} f(x,y) \, dy \right) \, dx$$

and that the order of integration is not important:

$$\iint_R f(x,y) \, dA \quad = \quad \int_c^d \left(\int_a^b f(x,y) \, dx \right) \, dy$$

In our example, our parallelipiped has dimensions:

width=2 length=
$$\frac{1}{2}$$
 height=1

so we can easily compute the volume as:

$$V = 2 \times \frac{1}{2} \times 1 = 1$$

In our example, our parallelipiped has dimensions:

width=2 length=
$$\frac{1}{2}$$
 height=1

so we can easily compute the volume as:

$$V = 2 \times \frac{1}{2} \times 1 = 1$$

We can also compute the volume using Fubini's theorem,

$$V = \int_0^2 \left(\int_0^{\frac{1}{2}} 1 \, dy \right) dx$$

To find

$$V = \int_0^2 \left(\int_0^{\frac{1}{2}} 1 \, dy \right) dx$$

we first evaluate the inner integral,

$$V = \int_0^2 \left(y|_0^{\frac{1}{2}} \right) dx$$

and obtain

$$V = \int_0^2 \frac{1}{2} \, dx$$

and obtain

$$V = \int_0^2 \frac{1}{2} \, dx$$

Now the second integration gives

$$V = \int_{0}^{2} \frac{1}{2} dx = \frac{1}{2} x \Big|_{0}^{2} = 1$$