# The Classical Model 

Gene Quinn

## The Classical Definition

The first formulation of a probability theory is credited to Cardano and applies only to the following situation:

- 1) The number of possible outcomes is finite
- 2) All outcomes are equally likely


## The Classical Definition

The first formulation of a probability theory is credited to Cardano and applies only to the following situation:

- 1) The number of possible outcomes is finite
- 2) All outcomes are equally likely

As stated in section 2.1, with this model if there are $n$ possible outcomes, an event comprised of $m$ outcomes has probability

```
m
n
```


## The Classical Definition

The first formulation of a probability theory is credited to Cardano and applies only to the following situation:

- 1) The number of possible outcomes is finite
- 2) All outcomes are equally likely

As stated in section 2.1, with this model if there are $n$ possible outcomes, an event comprised of $m$ outcomes has probability

```
m
n
```

In what follows, we will characterize this model in the context of the Kolmogorov axioms.

## The Classical Definition

Suppose the experiment has $n$ possible outcomes, for some positive integer $n$.
Let $S$ be the sample space for this experiment.

## The Classical Definition

Suppose the experiment has $n$ possible outcomes, for some positive integer $n$.
Let $S$ be the sample space for this experiment.
In the terminology of set theory, the cardinality of the set $S$ is $n$,

$$
N(S)=n
$$

## The Classical Definition

Now for any subset $A$ of $S$, define the probability function $P(A)$ by:

$$
P(A)=\frac{N(A)}{N(S)}
$$

## The Classical Definition

Now for any subset $A$ of $S$, define the probability function $P(A)$ by:

$$
P(A)=\frac{N(A)}{N(S)}
$$

In other words, for any subset $A$ of $S$, the value of the probability function $P(A)$ is just the ratio of the cardinality of $A$ to the cardinality of $S$.

## The Classical Definition

To be a probability function, $P$ must satisfy the first three Kolmogorov axioms.

## The Classical Definition

To be a probability function, $P$ must satisfy the first three Kolmogorov axioms.

Because the sample space $S$ is finite, the fourth axiom is not required.

## The Classical Definition

To be a probability function, $P$ must satisfy the first three Kolmogorov axioms.

Because the sample space $S$ is finite, the fourth axiom is not required.

## Axiom 1:

$$
P(A) \geq 0 \quad \text { for any } \quad A \subseteq S
$$

## The Classical Definition

To be a probability function, $P$ must satisfy the first three Kolmogorov axioms.

Because the sample space $S$ is finite, the fourth axiom is not required.

## Axiom 1:

$$
P(A) \geq 0 \quad \text { for any } \quad A \subseteq S
$$

This axiom is satisfied by $P$, since for any subset $A$ of $S$,

$$
N(A) \geq 0
$$

which implies that

$$
P(A)=\frac{N(A)}{N(S)} \geq 0
$$

## The Classical Definition

Axiom 2:

$$
P(S)=1
$$

## The Classical Definition

Axiom 2:

$$
P(S)=1
$$

This axiom is satisfied because in this case

$$
P(S)=\frac{N(S)}{N(S)}=1
$$

## The Classical Definition

Axiom 3: If $A$ and $B$ are two mutually exclusive events defined over $S$, then

$$
P(A \cup B)=P(A)+P(B)
$$

## The Classical Definition

Axiom 3: If $A$ and $B$ are two mutually exclusive events defined over $S$, then

$$
P(A \cup B)=P(A)+P(B)
$$

Recall that for any two finite sets $A$ and $B$,

$$
N(A \cup B)=N(A)+N(B)-N(A \cap B)
$$

## The Classical Definition

Axiom 3: If $A$ and $B$ are two mutually exclusive events defined over $S$, then

$$
P(A \cup B)=P(A)+P(B)
$$

Recall that for any two finite sets $A$ and $B$,

$$
N(A \cup B)=N(A)+N(B)-N(A \cap B)
$$

If $A$ and $B$ are mutually exclusive, $(A \cap B)=\emptyset$, so $N(A \cap B)=0$ and the formula reduces to:

$$
N(A \cup B)=N(A)+N(B)
$$

## The Classical Definition

Axiom 3: Now it follows that

$$
P(A \cup B)=\frac{N(A \cup B)}{N(S)}=\frac{N(A)+N(B)}{N(S)}=\frac{N(A)}{N(S)}+\frac{N(B)}{N(S)}
$$

## The Classical Definition

Axiom 3: Now it follows that

$$
P(A \cup B)=\frac{N(A \cup B)}{N(S)}=\frac{N(A)+N(B)}{N(S)}=\frac{N(A)}{N(S)}+\frac{N(B)}{N(S)}
$$

The last two terms on the right can be recognized as $P(A)$ and $P(B)$, respectively,

## The Classical Definition

Axiom 3: Now it follows that

$$
P(A \cup B)=\frac{N(A \cup B)}{N(S)}=\frac{N(A)+N(B)}{N(S)}=\frac{N(A)}{N(S)}+\frac{N(B)}{N(S)}
$$

The last two terms on the right can be recognized as $P(A)$ and $P(B)$, respectively,
so the equation becomes

$$
P(A \cup B)=P(A)+P(B)
$$

and the third Kolmogorov axiom is satisfied.

