
1. Preliminaries

The setting is a vector of n independent, identically distributed
(IID) random variables with finite variance (which implies finite ex-
pectation).

Without loss of generality, we will assume that the mean is zero
and the variance is one. This can be justified by noting that if Y is a
random variable with

E(Y ) = µ and V (Y ) = σ2 < ∞

then the transformed random variable

Z =
Y − µ

σ
has E(Z) = 0 and V (Z) = 1 = E(Z2)

Recall that if Z has moment-generating function mZ(t), then aZ has
moment-generating function mZ(at). Using this result, for a nonnega-
tive constant n, the moment-generating function of Z/

√
n is:

mZ/
√

n(t) = mZ

(

t
√

n

)

Recall also that every moment-generating function mY (t) has the fol-
lowing properties:

m(0) = 1, m′(0) = E(Y ), m′′(0) = E(Y 2)

Finally, remember from calculus that if a function f has a power series
expansion centered at zero, it is given by the formula:

f(t) =
∞

∑

n=0

f (n)(0)

n!
tn = f(0) + f ′(0)t +

f ′′(0)

2!
t2 + · · ·

The above power series is called a Maclaurin series or, more generally, a
Taylor series. Truncated power series play an important role in applied
Mathematics.

The difference between the full series and the truncated series is
called the remainder, so if we keep say, the first two terms (i.e., terms
up to index n = 1), the remainder is:

R1(t) =

∞
∑

n=0

f (n)(0)

n!
tn −

1
∑

n=0

f (n)(0)

n!
tn =

∞
∑

n=2

f (n)(0)

n!
tn



The Lagrange form of the remainder is a theorem that states that if
we keep the first k terms of the power series, the remainder can be
expressed in the following form:

Rk(t) =

∞
∑

n=k

f (n)(0)

n!
tn =

f (k+1)(ξ)

(k + 1)!
t(k+1) for some ξ ∈ (0, t)

so in the case n = 1, we can write the following exact expression for
f(t):

f(t) = f(0) + f ′(0)t +
f ′′(ξ)

2
t2 for some ξ ∈ (0, t)

Finally, we will need a result from calculus that says that:

lim
n→∞

(

1 +
a

n

)n

= ea

2. Proof of the Central Limit Theorem

Theorem (Central Limit Theorem). Suppose (Z1, Z2, . . . , Zn) are in-

dependent, identically distributed random variables with expected value

E(Zi) = 0 and variance V (Yi) = 1, and define

Un =
1
√

n

n
∑

i=1

Zi, n = 1, 2, . . .

Then the distribution function of Un converges to that of the standard

normal distribution, N(0, 1), as n → ∞.

Proof. Let mZ(t) be the moment-generating function of each Zi. Using
Taylor’s theorem with remainder, we can write the following (exact)
expression for mZ(t) as a Taylor series with two terms and the remain-
der:

mZ(t) = mZ(0) + m′
Z(0) · t + m′′

z(ξ) ·
t2

2
for some 0 < ξ < t

By the properties of moment-generating functions, m(0) = 1 and
m′(0) = E(Z) which is zero in this case, so our expression becomes

mZ(t) = 1 + m′′
z(ξ) ·

t2

2
for some 0 < ξ < t

Now

Un =
1
√

n

n
∑

i=1

Zi =
n

∑

i=1

Zi√
n

, n = 1, 2, . . .



so again using the properties of moment-generating functions and the
fact that the Zi are independent, we can write the moment-generating
function for Un as:

mUn
(t) =

n
∏

i=1

mZi

(

t
√

n

)

=

[

mZ

(

t
√

n

)]n

replacing

mZ

(

t
√

n

)

with the Taylor series version

1 +
m′′

Z(ξ)

2
·

(

t
√

n

)2

for some ξn ∈ (0, t/
√

n)

we obtain

mUn
(t) =

[

1 +
m′′

Z(ξn)

2

(

t
√

n

)2
]n

for some ξn ∈ (0, t/
√

n)

which can be rearranged to

mUn
(t) =

[

1 +
m′′

Z(ξn)(t
2/2)

n

]n

for some ξn ∈ (0, t/
√

n)

Noting that as n → ∞, ξn → 0 (because ξn ∈ (0, t/
√

n), so

lim
n→∞

m′′
Z(ξn) = m′′

Z(0) = E(Z2) = 1

and we can now write

lim
n→∞

mUn
(t) = lim

n→∞

[

1 +
t2/2

n

]n

= et2/2

which is the moment-generating function of a standard normal variate.
�


