1. Convergence in probability

First we define a mode of convergence for sequences of random variables.

Recall that a random variable is a function that maps the elements of a sample space S into the real numbers. This means that a sequence of random variables is in fact a sequence of functions, a concept we have encountered before.

For example, the sequence of partial sums of a power series is a sequence of functions. If the power series converges, we then have a sequence of functions that converges to a limiting function.

Definition (convergence in probability). Let $\left\{Z_{n}\right\}$ be a sequence of random variables,

$$
\left\{Z_{n}\right\}=Z_{1}, Z_{2}, Z_{3}, \ldots
$$

We say that $\left\{Z_{n}\right\}$ converges to the random variable Z in probability and write

$$
Z_{n} \xrightarrow{P} Z
$$

if, for every $\epsilon>0$,

$$
P\left(\left|Z_{n}-Z\right| \geq \epsilon\right) \rightarrow 0 \quad \text { as } \quad n \rightarrow \infty
$$

In effect, the definition says that the probability that Z_{n} and Z differ by any given amount (ϵ) will be negligible if n is large enough.

2. Bernoulli's (weak) Law of Large Numbers

Theorem (Bernoulli). If Y_{n} is a sequence of random variables having the binomial distribution

$$
Y_{n}=\mathcal{B}(n, p), \quad n=1,2,3, \ldots
$$

then

$$
\frac{Y_{n}}{n} \xrightarrow{P} p
$$

That is, as n becomes large, the probability that Y_{n} / n differs from p by any given amount tends to zero.

Note that our definition of convergence in probability requires that the symbol p following \xrightarrow{P} represent a random variable. So, strictly speaking, p should not be interpreted as a constant, but rather as the random variable that takes the value p with probability 1 , or, equivalently, the random variable that maps every element of the sample
space to the constant p. That said, the random variable p behaves exactly like the constant p.

Proof. From Theorem 3.7, we know that since Y_{n} is distributed as binomial (n, p), then

$$
E\left(Y_{n}\right)=n p \quad \text { and } \quad V\left(Y_{n}\right)=n p(1-p)
$$

From Exercise 3.33, we have that if Y is a random variable and a and b are constants, then

$$
E(a Y+b)=a E(Y)+b
$$

so that if we let $a=1 / n$ and $b=-p$, we have

$$
E\left(\frac{Y_{n}}{n}-p\right)=\frac{1}{n} E\left(Y_{n}\right)-p=\frac{1}{n} \cdot n p-p=p-p=0
$$

Also from 3.33, we know that

$$
V(a Y+b)=a^{2} V(Y)
$$

so

$$
V\left(\frac{Y_{n}}{n}-p\right)=\frac{1}{n^{2}} V\left(Y_{n}\right)=\frac{n \cdot p(1-p)}{n^{2}}=\frac{p \cdot(1-p)}{n}
$$

Now define

$$
S_{n}=\left(\frac{Y_{n}}{n}-p\right), \quad n=1,2,3, \ldots
$$

Since $E\left(S_{n}\right)=0$,

$$
V\left(S_{n}\right)=\frac{p \cdot(1-p)}{n}=E\left(S_{n}^{2}\right)-\left[E\left(S_{n}\right)\right]^{2}=E\left(S_{n}^{2}\right)
$$

Now suppose $\epsilon>0$ is given. Then by Chebychev's inequality,

$$
P\left(\left|S_{n}\right| \geq \epsilon\right) \leq \frac{E\left(S_{n}^{2}\right)}{\epsilon^{2}}
$$

and by substitution we get

$$
P\left(\left|S_{n}\right| \geq \epsilon\right) \leq \frac{p \cdot(1-p)}{n \epsilon^{2}} \rightarrow 0
$$

as $n \rightarrow \infty$ because p and ϵ are constants.

