MA395 Takehome Quiz 6

Name:

1) (heads) (Problem 3.11.2) Suppose a die is rolled 6 times. Let X be the total number of 4's that occur and let Y be the number of 4's in the first two tosses. Find $P_{Y \mid x}(y)$.

Solution: The event ($X=x$ and $Y=y$) occurs when we roll y 4's in the first two tosses, and $x-y$ in the last 4.

We may consider the first two tosses as a binomial experiment with $n=2$ trials and $p=1 / 6$, and the probability of y successes is

$$
P(Y=y)=\binom{2}{y}\left(\frac{1}{6}\right)^{y}\left(\frac{5}{6}\right)^{2-y}, \quad 0 \leq y \leq 2
$$

Likewise, we may consider the last four tosses as a binomial experiment, but with $n=4$, so the probability of $x-y$ successes is:

$$
P(X-Y=x-y)=\binom{4}{x-y}\left(\frac{1}{6}\right)^{x-y}\left(\frac{5}{6}\right)^{4-x+y}, \quad 0 \leq x-y \leq 4
$$

Since the last four trials are independent of the first two, the probability of the joint event, $P(X=x$ and $Y=y)$ is the product:

$$
\left[\binom{2}{y}\left(\frac{1}{6}\right)^{y}\left(\frac{5}{6}\right)^{2-y}\right]\left[\binom{4}{x-y}\left(\frac{1}{6}\right)^{x-y}\left(\frac{5}{6}\right)^{4-x+y}\right]
$$

We may consider the six tosses as a binomial experiment with $n=4$, so the probability of x successes is:

$$
P(X=x)=\binom{6}{x}\left(\frac{1}{6}\right)^{x}\left(\frac{5}{6}\right)^{6-x}, \quad 0 \leq x \leq 6
$$

Now the conditional probability is by definition

$$
p_{Y \mid x}=\frac{p_{X Y}(x, y)}{p_{X} x}
$$

which is

$$
\frac{\left[\binom{2}{y}\left(\frac{1}{6}\right)^{y}\left(\frac{5}{6}\right)^{2-y}\right]\left[\binom{4}{x-y}\left(\frac{1}{6}\right)^{x-y}\left(\frac{5}{6}\right)^{4-x+y}\right]}{\binom{6}{x}\left(\frac{1}{6}\right)^{x}\left(\frac{5}{6}\right)^{6-x}}=\frac{\binom{2}{y}\binom{4}{x-y}}{\binom{6}{x}}
$$

which is a hypergeometric probability.

1) (tails) (Problem 3.11.3) An urn contains eight red chips, six white chips, and four blue chips. A sample of size 3 is drawn without replacement. Let X be the number of red chips, and Y the number of white chips. Find an expression for $P_{Y \mid x}(y)$.

Solution: Refering to the section on the hypergeometric distribution, it is suggested (problem 3.2.32) that the distribution generalizes to sampling from an urn with 3 kinds of objects, with the probability of the triple $\left(k_{1}, k_{2}, k_{3}\right)$ given by

$$
\frac{\binom{n_{1}}{k_{1}}\binom{n_{2}}{k_{2}}\binom{n_{3}}{k_{3}}}{\binom{N}{n}}
$$

so that, in this problem, the probability of obtaining y white and x red chips would be

$$
P(X=x \text { and } Y=y)=\frac{\binom{6}{y}\binom{8}{x}\binom{4}{3-x-y}}{\binom{18}{3}}
$$

To find the probability of choosing x red chips, consider the sample as a hypergeometric experiment with 8 red and 10 non-red chips, so

$$
P(X=x)=\frac{\binom{8}{x}\binom{10}{3-x}}{\binom{18}{3}}
$$

The conditional probability is the ratio of these two probabilities:

$$
\frac{P(X=x \text { and } Y=y)}{P(X=x)}=\frac{\binom{6}{y}\binom{4}{3-x-y}}{\binom{10}{3-x}}
$$

2)(heads) (Problem 3.11.11) A nonnegative random variable X is called memoryless if

$$
P(X>s+t \mid X>t)=P(X>s) \quad \text { for all } s, t \geq 0
$$

Show that a random variable with pdf

$$
f_{X}(x)=\left(\frac{1}{\lambda}\right) e^{-x / \lambda}, \quad x>0
$$

is memoryless.
Solution: The conditional probability is

$$
\frac{P(X>s+t \text { and } X>t}{P(X>t)}=\frac{P(X>s+t)}{P(X>t)}=\frac{1-F_{X}(s+t)}{1-F_{X}(t)}
$$

The cdf is

$$
F_{X}(x)=\int_{0}^{x} \lambda e^{-\lambda x} d x=1-e^{-\lambda x}
$$

so the conditional probability is

$$
\frac{1-F_{X}(s+t)}{1-F_{X}(t)}=\frac{e^{-\lambda(s+t)}}{e^{-\lambda t}}=e^{-\lambda s}=P(X>s)
$$

2)(tails) (Problem 3.11.12) Given the joint pdf

$$
F_{X Y}(x, y)=2 e^{-x-y}, \quad 0<x<y, \quad y>0
$$

find:

- (a) $P(Y<1 \mid X<1)$
- (b) $P(Y<1 \mid X=1)$
- (c) $f_{Y \mid x}(y)$
- (d) $E(Y \mid x)$

Solution: a) The marginal density of X is

$$
f_{X}(x)=\int_{x}^{\infty} 2 e^{-x-y} d y=2 e^{-2 x}, \quad x>0
$$

Then

$$
P(X<1)=\int_{0}^{1} 2 e^{-2 x} d x=1-e^{-2}=0.865
$$

The probability of the joint event $Y<1$ and $X<1$ is

$$
\begin{gathered}
P(X<1 \text { and } Y<1)=\int_{0}^{1} \int_{0}^{x} 2 e^{-x-y} d y d x=-2 e^{-x}+\left.e^{-2 x}\right|_{0} ^{1} \\
=0.4
\end{gathered}
$$

The conditional probability is

$$
\frac{0.4}{0.865}=0.462
$$

b) Since Y is always greater than X, this probability is zero.
c) The conditional density is

$$
f_{Y \mid x}=\frac{f_{X Y}(x, y)}{f_{X}(x)}=\frac{2 e^{-x-y}}{2 e^{-2 x}}=e^{x} e^{-y} x<y
$$

d) The conditional expectation is

$$
\mathrm{E}(Y \mid x)=\int_{x}^{\infty} y \cdot e^{x} e^{-y}=(1+x)
$$

3)(heads) (Problem 3.11.14) If

$$
f_{X Y}(x, y)=2, \quad x \geq 0, \quad y \geq 0, \quad x+y \leq 1
$$

show that the conditional pdf of Y given x is uniform.
Solution: The conditional density is given by

$$
f_{Y \mid x}(y)=\frac{f_{X Y}(x, y)}{f_{X}(x)}
$$

We obtain the marginal of X by integrating $f_{X Y}(x, y)$ over the range of values Y assumes, which is 0 to $1-x$,

$$
f_{X}(x)=\int_{0}^{1-x} 2 d y=\left.2 y\right|_{0} ^{1-x}=2(1-x)
$$

so

$$
f_{Y \mid x}(y)=\frac{f_{X Y}(x, y)}{f_{X}(x)}=\frac{2}{2(1-x)}=\frac{1}{1-x}
$$

Since this is a constant for any fixed value of x, the conditional is a uniform density.
3)(tails) (Problem 3.11.15) Suppose that

$$
f_{Y \mid x}(y)=\frac{2 y+4 x}{1+4 x} \quad \text { and } \quad f_{X}(x)=\frac{1}{3}(1+4 x), \quad 0<x, y<1
$$

Find the marginal pdf of Y.
Solution: Use the definition of the conditional density

$$
f_{Y \mid x}(y)=\frac{f_{X Y}(x, y)}{f_{X}(x)}
$$

to obtain an expression for the joint density:

$$
f_{X Y}(x, y)=f_{Y \mid x}(y) \cdot f_{X}(x)=\left(\frac{2 y+4 x}{1+4 x}\right)\left(\frac{1}{3}(1+4 x)\right)=\frac{2 y+4 x}{3}
$$

Now find the marginal density of Y by integrating the joint density with respect to X :

$$
f_{Y}(y)=\int_{0}^{1} \frac{2 y+4 x}{3} d x=\left.\frac{1}{3}\left(2 x y+2 x^{2}\right)\right|_{0} ^{1}
$$

$$
f_{Y}(y)=\frac{1}{3}(2 y+2) \quad 0 \leq y \leq 1
$$

4)(heads) (Problem 3.12.7) A random variable X has the Poisson distribution if

$$
P(x=k)=p_{X}(k)=\frac{e^{-\lambda} \lambda^{k}}{k!}, \quad k=0,1,2, \ldots
$$

Find the moment generating function for a Poisson random variable.
Solution: From the definition, the moment generating function is

$$
\begin{aligned}
M_{Y}(t)=\mathrm{E}\left(e^{t y}\right) & =\sum_{k=0}^{\infty} e^{t k} e^{-\lambda} \frac{\lambda^{k}}{k!} ;=e^{-\lambda} \sum_{k=0}^{\infty} \frac{\left(\lambda e^{t}\right)^{k}}{k!} \\
= & e^{-\lambda} e^{\lambda e^{t}}=e^{\lambda\left(e^{t}-1\right)}
\end{aligned}
$$

4)(tails) (Problem 3.12.8) Let Y be a continuous random variable with

$$
f_{Y}(y)=y e^{-y}, \quad 0 \leq y
$$

Show that

$$
M_{Y}(t)=\frac{1}{(1-t)^{2}}
$$

Solution: From the definition, $M_{Y}(t)$ is

$$
M_{Y}(t)=\mathrm{E}\left(e^{t y}\right)=\int_{0}^{\infty} e^{t y} y e^{-y}=\int_{0}^{\infty} y e^{-y(1-t)}=\frac{1}{(1-t)^{2}}
$$

5) (heads) (Problem 3.12.14) Find an expression for $\mathrm{E}\left(Y^{k}\right)$ if

$$
M_{Y}(t)=(1-t / \lambda)^{-r}
$$

where λ is a positive real number and r is a positive integer.
Solution: The first derivative of $M_{Y}(t)$ with respect to t is

$$
M_{Y}^{(1)}(0)=\frac{r}{\lambda}
$$

The second derivative of $M_{Y}(t)$ with respect to t is

$$
M_{Y}^{(2)}(0)=\frac{r(r+1)}{\lambda^{2}}
$$

Continuing, the $k^{\text {th }}$ derivative is The first derivative of $M_{Y}(t)$ with respect to t is

$$
M_{Y}^{(k)}(t)=\frac{(r+k-1)!}{(r-1)!\lambda^{k}}
$$

5)(tails) (Problem 3.12.16) Find the variance of Y if

$$
M_{Y}(t)=\frac{e^{2 t}}{1-t^{2}}
$$

Solution: We will use the moment-generating function to find $\mathrm{E}(Y)$ and $\mathrm{E}\left(Y^{2}\right)$ then use the formula

$$
\operatorname{Var}(Y)=\mathrm{E}\left(Y^{2}\right)-[\mathrm{E}(Y)]^{2}
$$

Using the quotient rule, the first derivative of the moment-generating function is

$$
M_{Y}^{(1)}(t)=\frac{\left(1-t^{2}\right) 2 e^{2 t}-(-2 t) e^{2 t}}{\left(1-t^{2}\right)^{2}}
$$

and so

$$
\mathrm{E}(Y)=M_{Y}^{(1)}(0)=\frac{\left(1-0^{2}\right) 2 e^{0}-(-0) e^{0}}{\left(1-0^{2}\right)^{2}}=2
$$

A tedious but straightforward second differentation shows that

$$
\mathrm{E}\left(Y^{2}\right)=M_{Y}^{(2)}(0)=6
$$

so

$$
\operatorname{Var}(Y)=6-(2)^{2}=2
$$

6)(heads) (Problem 3.12.19) Use theorems 3.12 .2 and 3.12 .3 to determine which of the following are true:

- a) The sum of two independent Poisson random variables has a Poisson distribution
- b) The sum of two independent exponential random variables has an exponential distribution
- c) The sum of two independent normal random variables has a normal distribution

Solution: a) The moment-generating function of the Poisson distribution is

$$
M_{Y}(t)=\exp \left(-\lambda+\lambda e^{t}\right)
$$

If X and Y are independent Poisson random variables with parameters μ and λ, respectively, then the moment-generating function of $X+Y$ is the product

$$
\begin{gathered}
M_{(X+Y)}(t)=M_{X}(t) \cdot M_{Y}(t)=\exp \left(-\lambda+\lambda e^{t}\right) \cdot \exp \left(-\mu+\mu e^{t}\right) \\
=\exp \left(-(\lambda+\mu)+(\lambda+\mu) e^{t}\right)
\end{gathered}
$$

which is the moment-generating function of a Poisson random variable with parameter $\lambda+\mu$.
b) The moment-generating function of the exponential distribution is

$$
M_{Y}(t)=\frac{\lambda}{\lambda-t}
$$

If X and Y are independent exponential random variables with parameters μ and λ, respectively, then the moment-generating function of $X+Y$ is the product

$$
\begin{aligned}
M_{(X+Y)}(t)= & M_{X}(t) \cdot M_{Y}(t)=\frac{\lambda}{\lambda-t} \cdot \frac{\mu}{\mu-t} \\
& =\frac{\lambda \mu}{(\lambda-t)(\mu-t)}
\end{aligned}
$$

which is not the moment-generating function of an exponential random variable, so the sum does not have an exponential distribution.
c) The moment-generating function of the normal distribution is

$$
M_{Y}(t)=\exp \left(\mu t+\sigma^{2} t^{2} / 2\right)
$$

If X and Y are independent exponential random variables with parameters μ and λ, respectively, then the moment-generating function of $X+Y$ is the product

$$
\begin{aligned}
M_{(X+Y)}(t) & =M_{X}(t) \cdot M_{Y}(t)=\exp \left(\mu_{1} t+\sigma_{1}^{2} t^{2} / 2\right) \cdot \exp \left(\mu_{2} t+\sigma_{2}^{2} t^{2} / 2\right) \\
& M_{(X+Y)}(t)=\exp \left(\left(\mu_{1}+\mu_{2}\right) t+\left(\sigma_{1}^{2}+\sigma_{2}^{2}\right) t^{2} / 2\right)
\end{aligned}
$$

which is the moment-generating function of a normal random variable with mean $\mu_{1}+\mu_{2}$ and variance $\sigma_{1}^{2}+\sigma_{2}^{2}$.
6)(tails) (Problem 3.12.21) Suppose that $Y_{1}, Y_{2}, \ldots, Y_{n}$ is a random sample of size n from a normal distribution with mean μ and standard deviation σ. Use moment-generating functions to determine the pdf of

$$
\bar{Y}=\frac{1}{n} \sum_{i=1}^{n} Y_{i}
$$

Solution: The moment-generating function of a normal random variable with mean μ and standard deviation σ is

$$
M_{Y}(t)=\exp \left(\mu t+\sigma^{2} t^{2} / 2\right)
$$

Since n is a constant, by theorem 3.12.3a

$$
M_{Y}(t) \text { of } \frac{Y_{i}}{n} \quad \text { is } \quad M_{Y}(t / n)=\exp \left(\frac{\mu t}{n}+\frac{\sigma^{2} t^{2}}{2 n^{2}}\right)
$$

The Y_{i} form a random sample, so they are independent, and by theorem 3.12.3b the moment-generating function of the sum of Y_{i} / n is the product of the individual moment-generating functions, so

$$
\begin{aligned}
& M_{\bar{Y}}(t)=\prod_{i=1}^{n} \exp \left(\frac{\mu t}{n}+\frac{\sigma^{2} t^{2}}{2 n^{2}}\right)=\exp \left(\frac{\mu t}{n}+\frac{\sigma^{2} t^{2}}{2 n^{2}}\right)^{n} \\
& =\exp \left(\frac{n \mu t}{n}+\frac{n \sigma^{2} t^{2}}{2 n^{2}}\right)=\exp \left(\mu t+\frac{\left(\frac{\sigma}{\sqrt{n}}\right)^{2} t^{2}}{2}\right)
\end{aligned}
$$

which we recognize as the moment-generating function of a normal random variable with mean μ and standard deviation σ / \sqrt{n}.

