MA395 Takehome Quiz 5

Name:

1) (Problem 3.8.6) Let Y be a random variable with

$$
f_{Y}(y)=6 y(1-y), \quad 0 \leq y \leq 1
$$

Show that the pdf of $W=Y^{2}$ is

$$
f_{W}(w)=3(1-\sqrt{w})
$$

Solution: One way to solve this problem is to observe that the CDF of W is

$$
F_{W}(w)=P(W \leq w)=P\left(Y^{2} \leq w\right)=P(Y \leq \sqrt{w})=F_{Y}(\sqrt{w})
$$

The CDF of Y is

$$
F_{Y}(y)=\int_{0}^{y} 6 t(1-t) d t=3 y^{2}-2 y^{3}
$$

Then

$$
F_{W}(w)=F_{Y}(\sqrt{w})=3(\sqrt{w})^{2}-2(\sqrt{w})^{3}
$$

Taking the derivative with respec
Solution: Tt to w, we obtain

$$
f_{W}(w)=3(1-\sqrt{w})
$$

A more general approach (not covered in the text) is the following:
Suppose:

- Y is a random variable with $\operatorname{PDF} f_{Y}(y)$.
- h is a $1: 1$ function differentiable on some open interval D that contains the support of Y.

Then

$$
W=h(Y)
$$

is a continuous random variable with density function

$$
f_{W}(w)=f_{Y}\left(h^{-1}(w)\right) \cdot\left|\frac{d}{d w} h^{-1}(w)\right|
$$

Now consider the previous example,

$$
f_{Y}(y)=6 y(1-y), \quad 0 \leq y \leq 1
$$

with

$$
W=h(Y)=Y^{2} \quad \text { and } \quad h^{-1}(w)=\sqrt{w}
$$

Then

$$
\frac{d}{d w} h^{-1}(w)=\frac{d}{d w} \sqrt{w}=\frac{1}{2 \sqrt{w}}
$$

then using the above theorem,

$$
f_{W}(w)=6 \sqrt{w}(1-\sqrt{w}) \cdot\left|\frac{1}{2 \sqrt{w}}\right|=3(1-\sqrt{w})
$$

2) (Problem 3.8.2) Find the pdf of $X+Y$ if X and Y are independent random variables with

$$
f_{X}(x)=x e^{-x}, \quad x \geq 0 \quad \text { and } \quad f_{Y}(y)=e^{-y}, \quad y \geq 0
$$

Solution: The PDF of the sum is given by the convolution integral

$$
\begin{gathered}
f_{X+Y}(W)=\int_{-\infty}^{\infty} f_{X}(x) f_{Y}(w-x) d x=\int_{0}^{w}\left(x e^{-x}\right)\left(e^{-(w-x)}\right) d x \\
=e^{-w} \int_{0}^{w} x d x=\frac{w^{2}}{2} e^{-w}, \quad w \geq 0
\end{gathered}
$$

3) (Problem 3.9.2) Suppose

$$
f_{X Y}(x, y)=\lambda^{2} \cdot e^{-\lambda(x+y)}
$$

Find $E(X+Y)$.
Solution: Note that the joint PDF factors into the product of the marginals,

$$
f_{X Y}(x, y)=\lambda^{2} \cdot e^{-\lambda(x+y)}=\left(\lambda e^{-x}\right)\left(\lambda e^{-y}\right)
$$

so X and Y are independent exponential random variables, and we have a theorem that says for independent random variables X and Y,

$$
\mathrm{E}(X+Y)=\mathrm{E}(X)+\mathrm{E}(Y)=\frac{1}{\lambda}+\frac{1}{\lambda}=\frac{2}{\lambda}
$$

4) (Problem 3.8.7) Given that X and Y are independent random variables, find the pdf of $X Y$ for the following two sets of marginal pdfs:
(a) $\quad f_{X}(x)=1, \quad 0 \leq x \leq 1 \quad$ and $\quad f_{Y}(y)=1, \quad 0 \leq y \leq 1$
(b) $\quad f_{X}(x)=2 x, \quad 0 \leq x \leq 1 \quad$ and $\quad f_{Y}(y)=2 y, \quad 0 \leq y \leq 1$

Solution: (a) Let $V=X Y$, then

$$
f_{V}(v)=\int_{-\infty}^{\infty} \frac{1}{|x|} f_{X}(v / x) f_{Y}(x) d x
$$

Since $f_{X}(v / x) \neq 0$ when $0 \leq v / x \leq 1$, we only have to consider $v \leq x$.
Also, $f_{Y}(x) \neq 0$ implies $x \leq 1$, so that the integral becomes

$$
\int_{v}^{1} \frac{d x}{x}=\left.\ln x\right|_{v} ^{1}=-\ln v, \quad 0 \leq v \leq 1
$$

5) (Problem 3.9.13) Suppose

$$
f_{X Y}(x, y)=\lambda^{2} \cdot e^{-\lambda(x+y)}
$$

Find $\operatorname{Var}(X+Y)$.
Solution: As we saw earlier,

$$
f_{X Y}(x, y)=\lambda^{2} \cdot e^{-(x+y)}=\left(\lambda e^{-\lambda x}\right)\left(\lambda e^{-\lambda y}\right)
$$

so X and Y are independent exponential random variables, and we have a theorem that states that for independent random variables, the variance of their sum is the sum of their variances, so

$$
\operatorname{Var}(X+Y)=\operatorname{Var}(X)+\operatorname{Var}(Y)=\frac{1}{\lambda^{2}}+\frac{1}{\lambda^{2}}=\frac{2}{\lambda^{2}}
$$

