MA395 Takehome Quiz 4

Name:

1) Let X and Y be two continuous random variables defined over the unit square with joint pdf

$$
f_{X, Y}(x, y)=c \cdot\left(x^{2}+y^{2}\right)
$$

a) Find the value of c.
b) Find the marginal pdfs $f_{X}(x)$ and $f_{Y}(y)$.

Solution: Integrating $f_{X, Y}(x, y)$ over the unit square should give 1 , so

$$
\begin{gathered}
1=c \int_{0}^{1} \int_{0}^{1}\left(x^{2}+y^{2}\right) d y d x=c \int_{0}^{1}\left[\int_{0}^{1}\left(x^{2}+y^{2}\right) d y\right] d x \\
=c \int_{0}^{1}\left[\left.\left(x^{2} y+\frac{y^{3}}{3}\right)\right|_{0} ^{3}\right] d x=c \int_{0}^{1}\left[x^{2}+\frac{1}{3}\right] d x=\left.c\left(\frac{x^{3}}{3}+\frac{x}{3}\right)\right|_{0} ^{1}=\frac{2}{3} c
\end{gathered}
$$

so $c=3 / 2$. The marginals are:

$$
\begin{aligned}
& f_{Y}(y)=\frac{3}{2} \int_{0}^{1}\left(x^{2}+y^{2}\right) d x=\left.\frac{3}{2}\left(\frac{x^{3}}{3}+x y^{2}\right)\right|_{0} ^{1}=\frac{1}{2}\left(1+3 y^{2}\right) \\
& f_{X}(x)=\frac{3}{2} \int_{0}^{1}\left(x^{2}+y^{2}\right) d y=\left.\frac{3}{2}\left(\frac{y^{3}}{3}+x^{2} y\right)\right|_{0} ^{1}=\frac{1}{2}\left(1+3 x^{2}\right)
\end{aligned}
$$

2) Suppose that random variables X and Y vary in accordance with the joint pdf

$$
f_{X Y}(x, y)=c \cdot(x+y), \quad 0<x<y 1
$$

a) Find c.
b) Find the marginal pdfs $f_{X}(x)$ and $f_{Y}(y)$.

Solution: The double integral of $f_{X Y}(x, y)$ over its support must be 1, so

$$
\begin{gathered}
1=\int_{0}^{1} \int_{0}^{y} c(x+y) d x d y=c \int_{0}^{1}\left[\left.\left(\frac{x^{2}}{2}+x y\right)\right|_{0} ^{y}\right] d y \\
=c \int_{0}^{1} \frac{3 y^{2}}{2} d y=\left.c \frac{y^{3}}{2}\right|_{0} ^{1}=\frac{c}{2}
\end{gathered}
$$

so $c=2$. To find the marginal of $Y, f_{Y}(y)$, we integrate $f_{X Y}(x, y)$ with respect to X over the support. In this case, there is no support if $Y<X$, so the appropriate integral is:

$$
f_{Y}(y)=2 \int_{y}^{1}(x+y) d x=\left.\left(2 x y+x^{2}\right)\right|_{y} ^{1}=1+2 y-3 y^{2}
$$

To find the marginal of $X, f_{X}(x)$, we integrate $f_{X Y}(x, y)$ with respect to Y over the support. In this case, there is no support if $Y<X$, so the appropriate integral is:

$$
f_{X}(x)=2 \int_{0}^{x}(x+y) d y=\left.\left(2 x y+y^{2}\right)\right|_{0} ^{x}=3 x^{2}
$$

3) Consider the experiment of tossing a fair coin three times. Let X denote the number of heads obtained on the last flip, and let Y denote the total number of heads in three flips. Find $f_{X, Y}(x, y)$.

Solution: The set of possible outcomes is given by the following table:

Outcome	X	Y
HHH	1	3
HHT	0	2
HTH	1	2
HTT	0	1
THH	1	2
THT	0	1
TTH	1	1
TTT	0	0

Each event in the table has probability $1 / 8$. Next construct a table of probabilities for the values of (X, Y) that accually occur, which represents $f_{X Y}(x, y)$.

(x, y)	$f_{X Y}(x, y)$
$(0,0)$	$1 / 8$
$(0,1)$	$2 / 8$
$(0,2)$	$1 / 8$
$(1,1)$	$1 / 8$
$(1,2)$	$2 / 8$
$(1,3)$	$1 / 8$

4) (Problem 3.7.12) A point is chosen at random from the interior of the circle whose equation is

$$
x^{2}+y^{2}=4
$$

Let the random variables X and Y be the x-coordinate and y-coordinate, respectively, of the point chosen.
a) Find $f_{X, Y}(x, y)$.
b) Find the marginal pdfs $f_{X}(x)$ and $f_{Y}(y)$.

Solution: The distribution is a joint uniform density, so it will be a constant function. The (constant) value of $f_{X Y}(x, y)$ will be the height of a cylinder with unit volume whose base is the circle of radius 2 centered at the origin.

Since the volume of such a cylinder is $4 \pi h, h=f_{X Y}(x, y)$ must be $1 / 4 \pi$.

One way to find the marginal of X is to find the marginal CDF $F_{X}(x)$ and take its derivative. By definition, $F_{X}(x)$ is the probability that $X \leq x$, which is $1 / 4 \pi$ times the part of the area of the circle that lies to the left of x, or

$$
\frac{2}{4 \pi} \int_{-2}^{x} \sqrt{4-t^{2}} d t
$$

By the Fundamental Theorem of Calculus, the derivative of this integral with respect to x is just the integrand evaluated at $t=x$, so

$$
f_{X}(x)=\frac{1}{2 \pi} \sqrt{4-x^{2}}
$$

By symmetry, the marginal of Y is

$$
f_{Y}(y)=\frac{1}{2 \pi} \sqrt{4-y^{2}}
$$

5) Suppose X and Y are random variables with joint pdf $f_{X, Y}(x, y)=$ $x+y$ for X and Y each defined over the unit interval. Find

$$
P(X<2 Y)
$$

(i.e., find the probability of the event that X is smaller than $2 Y$)

Solution: The support in this case is the unit square, and the event corresponds to the portion of the unit square that lies above the line
$y=x / 2$. The probability of the event $X<2 Y$ corresponds to the area of this region, or

$$
\begin{aligned}
\int_{0}^{1} \int_{x / 2}^{1}(x+y) d y d x & =\int_{0}^{1}\left[\int_{x / 2}^{1}(x+y) d y\right] d x \\
\int_{0}^{1}\left[\left.\left(x y+\frac{y^{2}}{2}\right)\right|_{x / 2} ^{1}\right] d x & =\int_{0}^{1}\left(x+\frac{1}{2}-\frac{x^{2}}{2}-\frac{x^{2}}{8}\right) d x \\
= & \left.\left(x+\frac{1}{2}-\frac{x^{2}}{2}-\frac{x^{2}}{8}\right)\right|_{0} ^{1}=\frac{1}{2}+\frac{1}{2}-\frac{1}{6}-\frac{1}{24}=\frac{19}{24}
\end{aligned}
$$

