
MA395 Takehome Quiz 4

Name:

1) Let X and Y be two continuous random variables defined over the
unit square with joint pdf

fX,Y (x, y) = c · (x2 + y2)

a) Find the value of c.

b) Find the marginal pdfs fX(x) and fY (y).

Solution: Integrating fX,Y (x, y) over the unit square should give 1, so
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2) Suppose that random variables X and Y vary in accordance with
the joint pdf

fXY (x, y) = c · (x + y), 0 < x < y 1

a) Find c.

b) Find the marginal pdfs fX(x) and fY (y).

Solution: The double integral of fXY (x, y) over its support must be
1, so
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so c = 2. To find the marginal of Y , fY (y), we integrate fXY (x, y)
with respect to X over the support. In this case, there is no support if
Y < X, so the appropriate integral is:
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To find the marginal of X, fX(x), we integrate fXY (x, y) with respect
to Y over the support. In this case, there is no support if Y < X, so
the appropriate integral is:
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3) Consider the experiment of tossing a fair coin three times. Let X
denote the number of heads obtained on the last flip, and let Y denote
the total number of heads in three flips. Find fX,Y (x, y).

Solution: The set of possible outcomes is given by the following table:

Outcome X Y
HHH 1 3
HHT 0 2
HTH 1 2
HTT 0 1
THH 1 2
THT 0 1
TTH 1 1
TTT 0 0

Each event in the table has probability 1/8. Next construct a table
of probabilities for the values of (X, Y ) that accually occur, which
represents fXY (x, y).

(x, y) fXY (x, y)
(0,0) 1/8
(0,1) 2/8
(0,2) 1/8
(1,1) 1/8
(1,2) 2/8
(1,3) 1/8



4) (Problem 3.7.12) A point is chosen at random from the interior of
the circle whose equation is

x2 + y2 = 4

Let the random variables X and Y be the x-coordinate and y-coordinate,
respectively, of the point chosen.

a) Find fX,Y (x, y).

b) Find the marginal pdfs fX(x) and fY (y).

Solution: The distribution is a joint uniform density, so it will be a
constant function. The (constant) value of fXY (x, y) will be the height
of a cylinder with unit volume whose base is the circle of radius 2
centered at the origin.

Since the volume of such a cylinder is 4πh, h = fXY (x, y) must be
1/4π.

One way to find the marginal of X is to find the marginal CDF
FX(x) and take its derivative. By definition, FX(x) is the probability
that X ≤ x, which is 1/4π times the part of the area of the circle that
lies to the left of x, or
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By the Fundamental Theorem of Calculus, the derivative of this inte-
gral with respect to x is just the integrand evaluated at t = x, so
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5) Suppose X and Y are random variables with joint pdf fX,Y (x, y) =
x + y for X and Y each defined over the unit interval. Find

P (X < 2Y )

(i.e., find the probability of the event that X is smaller than 2Y )

Solution: The support in this case is the unit square, and the event
corresponds to the portion of the unit square that lies above the line



y = x/2. The probability of the event X < 2Y corresponds to the area
of this region, or
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