MA395 Takehome Quiz 3

Name:

1) A fair coin is tossed until the first tail appears. The payoffs are:

$$
\text { payoff }= \begin{cases}\$ 2^{k} & 1 \leq k \leq 9 \\ \$ 1,000 & k \geq 10\end{cases}
$$

How much should you have to pay to play the game to make it "fair" (i.e., to make your expected winnings equal to the cost to play the game)?

Solution: The "fair" cost to play is the expected value of the payoff,

$$
\begin{gathered}
\mathrm{E}(X)=\sum_{k=1}^{9} 2^{k}\left(\frac{1}{2^{k}}\right)+\sum_{k=10}^{\infty} 1000\left(\frac{1}{2^{k}}\right)=9+\frac{1000}{2^{10}} \sum_{k=0}^{\infty}\left(\frac{1}{2^{k}}\right) \\
=9+\frac{1000 \cdot 2}{1024}=\$ 10.95
\end{gathered}
$$

2) Show that if the random variable Y has the exponential distribution

$$
f_{Y}(y)=\lambda e^{-\lambda x} \quad y>0
$$

then

$$
\mathrm{E}(Y)=\frac{1}{\lambda} \quad \text { and } \quad \operatorname{Var}(Y)=\frac{1}{\lambda^{2}}
$$

Solution: From the definition,

$$
\begin{gathered}
\mathrm{E}(Y)=\int_{0}^{\infty} \lambda y \cdot e^{-\lambda y} d y=-\left.\left(\frac{(1+\lambda y) e^{-\lambda y}}{\lambda}\right)\right|_{0} ^{\infty}=\frac{1}{\lambda} \\
\mathrm{E}\left(Y^{2}\right)=\int_{0}^{\infty} \lambda y^{2} \cdot e^{-\lambda y} d y=-\left.\left(\frac{\left(2+2 \lambda y+\lambda^{2} y^{2}\right) e^{-\lambda y}}{\lambda^{2}}\right)\right|_{0} ^{\infty}=\frac{2}{\lambda^{2}} \\
\operatorname{Var}(Y)=\mathrm{E}\left(Y^{2}\right)-[\mathrm{E}(Y)]^{2}=\frac{2}{\lambda^{2}}-\left(\frac{1}{\lambda}\right)^{2}=\frac{1}{\lambda^{2}}
\end{gathered}
$$

3) If $\mathrm{E}(W)=\mu$ and $\operatorname{Var}(X)=\sigma^{2}$ show that

$$
\mathrm{E}\left(\frac{W-\mu}{\sigma}\right)=0 \quad \text { and } \quad \operatorname{Var}\left(\frac{W-\mu}{\sigma}\right)=1
$$

Solution: Using Theorem 3.6.2,

$$
\begin{gathered}
\mathrm{E}\left(\frac{W-\mu}{\sigma}\right)=\left(\frac{1}{\sigma^{2}}\right)[\mathrm{E}(W-\mu)]=\left(\frac{1}{\sigma^{2}}\right)[\mathrm{E}(W)-\mu]=0 \\
\operatorname{Var}\left(\frac{W-\mu}{\sigma}\right)=\left(\frac{1}{\sigma^{2}}\right) \operatorname{Var}(W)=1
\end{gathered}
$$

4) Let Y be a uniform random variable defined over the interval (0,2). Find an expression for the $r^{t h}$ moment of Y about the origin.

Solution: From the definition,

$$
\mathrm{E}\left(Y^{r}\right)=\int_{0}^{2} \frac{y^{r} d y}{2}=\left.\left(\frac{1}{2}\right) \frac{y^{r+1}}{r+1}\right|_{0} ^{2}=\frac{2^{r}}{r+1}
$$

5) Suppose a random variable Y has odf

$$
f_{Y}(y)=c \cdot y^{-6}, \quad y>1
$$

a) Find c.
b) What is the highest moment of Y that exists?

Solution: First find c by setting the integral of $f_{Y}(y)$ over its support to 1 :

$$
1=\int_{1}^{\infty} c y^{-6} d y=\left.c \cdot \frac{y^{-5}}{-5}\right|_{1} ^{\infty}=\frac{c}{5}
$$

so $c=5$. Now from the definition,

$$
\mathrm{E}\left(Y^{r}\right)=5 \int_{1} \infty y^{r} y^{-6} d y=\left.5 \cdot \frac{y^{r-5}}{r-5}\right|_{0} ^{\infty}
$$

The rightmost expression is only finite if $r<5$, so the highest moment that exists is the fourth.

