MA395 Takehome Quiz 3

Name:

1) A fair coin is tossed until the first tail appears. The payoffs are:
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PAYOR =3 $1,000 % > 10

How much should you have to pay to play the game to make it ”fair”
(i.e., to make your expected winnings equal to the cost to play the
game)?

Solution: The "fair” cost to play is the expected value of the payoff,
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2) Show that if the random variable Y has the exponential distribution

fy(y) = e y>0

then
1 1
E(Y) = X and Var(Y) = F
Solution: From the definition,
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3) If E(W) = p and Var(X) = 02 show that

E(W_u) =0 and Var(W_’u) =1
o o




Solution: Using Theorem 3.6.2,
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4) Let Y be a uniform random variable defined over the interval (0, 2).
Find an expression for the r** moment of Y about the origin.

Solution: From the definition,
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5) Suppose a random variable Y has odf
frly) = ¢y’ y>1

2 or

0 r+1

a) Find c.
b) What is the highest moment of Y that exists?

Solution: First find ¢ by setting the integral of fy(y) over its support
to 1:
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so ¢ = 5. Now from the definition,
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The rightmost expression is only finite if 7 < 5, so the highest moment
that exists is the fourth.



