MA395 Takehome Quiz 2

Name:

1) Let n be any positive integer. Show that, for a given n, the function

$$
f_{Y}(y)=(n+2)(n+1) y^{n}(1-y), \quad 0 \leq y \leq 1
$$

is a pdf.
Solution: The function is nonnegative on $[0,1]$. Now, integrating $f_{Y}(y)$ over its support,

$$
\begin{gathered}
\int_{0}^{1} f_{Y}(y)=(n+1)(n+2) \int_{0}^{1}\left(y^{n}-y^{n+1}\right) d y=\left.(n+2)(n+1)\left(\frac{y^{n+1}}{n+1}-\frac{y^{n+2}}{n+2}\right)\right|_{0} ^{1} \\
=\left.\left[(n+2) y^{n+1}-(n+1) y^{n+2}\right]\right|_{0} ^{1}=1
\end{gathered}
$$

2) Suppose Y is an exponential random variable, so that

$$
f_{Y}(y)=\lambda e^{-\lambda y}, \quad y \geq 0
$$

Find the cumulative distribution function $F_{Y}(y)$.

Solution:

$$
F_{Y}(y)=P(Y \leq y)=\int_{0}^{y} \lambda \cdot e^{-\lambda t}=-\left.e^{-\lambda t}\right|_{0} ^{y}=1-e^{-\lambda y}
$$

3) Suppose Y is a random variable representing the time to failure for a machine. The hazard rate is defined to be the probability that an item fails at time y, given that it has survived until time y. In terms of the pdf and cdf of Y, the hazard rate is:

$$
h(y)=\frac{f_{Y}(y)}{1-F_{Y}(y)}
$$

Find $h(y)$ if Y has an exponential distribution.
Solution: In this case the hazard ratio is:

$$
h(y)=\frac{\lambda e^{-\lambda y}}{1-\left(1-e^{-\lambda y}\right)}=\frac{\lambda e^{-\lambda y}}{e^{-\lambda y}}=\lambda
$$

4) Find a constant α so that, for some given value $k>1$,

$$
f_{Y}(y)=\frac{\alpha}{y^{2}}, \quad y \geq k
$$

is a pdf.
Solution: For $k>1, f_{Y}(y)$ is nonnegative, so we only have to choose α to make the integral of $f_{Y}(y)$ over its support equal to 1 ,

$$
\int_{k}^{\infty} \frac{\alpha}{y^{2}} d y=-\left.\frac{\alpha}{k}\right|_{k} ^{\infty}=\frac{\alpha}{k}
$$

so, choose $\alpha=k$.
5) Suppose

$$
F_{Y}(y)=\frac{1}{12}\left(y^{2}+y^{3}\right), \quad 0 \leq y \leq 2
$$

find $f_{Y}(y)$.

Solution:

$$
f_{Y}(y)=\frac{d}{d y}\left[\frac{y^{2}+y^{3}}{12}\right]=\frac{y}{6}+\frac{y^{2}}{4}, \quad 0 \leq y \leq 2
$$

