Contents

Preliminaries 1
Definitions 2
Examples 2
The n-tuple space F^{n} 2
The space polynomial functions over a field F 2
The space of $m \times n$ matrices $F^{m \times n}$ 3
The space of functions from a set to a field 3
The space of sequences 4
The space of real-valued functions on $[-1,1]$ 4

1. Norms 4

VECTOR SPACES

PRELIMINARIES

Definition 1 (group). A group consists of:

- A set G
- A binary operation $+: G \times G \rightarrow G$ with the following properties:

$$
\begin{array}{ll}
x+(y+z)=(x+y)+z \forall x, y, z \in G & \text { (associativity) } \\
\exists 0 \in G \text { such that } a+0=0+a=a \forall a \in G & \text { (identity) } \\
\forall a \in G \exists a^{-1} \text { such that } a+a^{-1}=a^{-1}+a=0 & \text { (inverse) }
\end{array}
$$

Definition 2 (field). A field consists of:

- A set F
- A binary operation $+: F \times F \rightarrow F$ with the following properties:

$$
\begin{array}{ll}
x+y=y+x \forall x, y \in F & \text { (additive commuta } \\
x+(y+z)=(x+y)+z \forall x, y, z \in F & \text { (additive associati } \\
\exists 0 \in F \text { such that } a+0=0+a=a \forall a \in F & \text { (additive identity) } \\
\forall a \in F \exists a^{-1} \text { such that } a+a^{-1}=a^{-1}+a=0 & \text { (additive inverse) }
\end{array}
$$

- A binary operation : $F \times F \rightarrow F$ with the following properties:

$$
\begin{array}{ll}
x y=y x \forall x, y \in F & \text { (multiplicative commutativity) } \\
x(y z)=(x y) z \forall x, y, z \in F & \text { (multiplicative associativity) } \\
\exists 1 \in F \text { such that } a 1=1 a=a \forall a \in F & \text { (multiplicative identity) } \\
\forall a \in F \backslash 0 \exists a^{-1} \text { such that } a a^{-1}=a^{-1} a=1 & \text { (multiplicative inverse) } \\
x(y+z)=x y+x z \quad \forall x, y, z \in F & \text { (distributive property) }
\end{array}
$$

Definitions

Definition 3 (vector space). A vector space or linear space consists of:

- A field F of elements called scalars
- A commutative group V of elements called vectors with respect to a binary operation +
- A binary operation : $F \times V \rightarrow V$ called scalar multiplication that associates with each scalar $\alpha \in F$ and vector $v \in V$ a vector αv in such a way that:

$$
\begin{aligned}
& 1 v=v \quad \forall v \in V \\
& (\alpha \beta) v=\alpha(\beta v) \quad \forall \alpha, \beta \in F, v \in V \\
& \alpha(v+w)=\alpha v+\alpha w \quad \forall \alpha \in F, v, w \in V \\
& (\alpha+\beta) v=\alpha v+\beta v \quad \forall \alpha, \beta \in F, v \in V
\end{aligned}
$$

Note that a vector space is a composite object consisting of a field, a set of 'vectors', and two operations with the specified properties. We say that V is a vector space over the field F. With respecte to the vector addition operation, V is a commutative (Abelian) group.

Examples

The n-tuple space F^{n}. Let F be any field and let V be the set of all n-tuples of scalars

$$
V=\left\{\left(x_{1}, x_{2}, \ldots, x_{n}\right): x_{i} \in F, i=1, \ldots, n\right\}
$$

Then for $x, y \in V$, define:

$$
(x+y)=\left(x_{1}+y_{1}, x_{2}+y_{2}, \ldots, x_{n}+y_{n}\right) \quad \forall x, y \in V
$$

and

$$
\alpha x=\left(\alpha x_{1}, \alpha x_{2}, \ldots, \alpha x_{n}\right) \quad \forall \alpha \in F, x \in V
$$

Specific examples are \mathbb{R}^{n} where $F=\mathbb{R}$ and \mathbb{C}^{n} where $F=\mathbb{C}$.
The space polynomial functions over a field F. Let F be a field and V the set of polynomial functions of F, that is, the set of all functions of the form

$$
f(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n}
$$

where a_{0}, \ldots, a_{n} are fixed scalars in F.
Note that if f and g are polynomials on F and $c \in F$, then $f+g$ and $c f$ are also polynomials in F.

The space of $m \times n$ matrices $F^{m \times n}$. If F is a field and $m, n \in \mathbb{N}$, let $F^{m \times n}$ be the set of all $m \times n$ matrices over F. Define

$$
(A+B)_{i j}=A_{i j}+B_{i j}, \quad i=1, \ldots, m, j=1, \ldots, n \quad \forall A, B \in V
$$

and

$$
(c A)_{i j}=c\left(A_{i j}\right), \quad i=1, \ldots, m, j=1, \ldots, n \quad \forall A \in V, c \in F
$$

The space of functions from a set to a field. Let F be a field and S a nonempty set. Let V be the set of all functions from S into F :

$$
V=\{f: S \rightarrow F\}
$$

If $f, g \in V$, define:

$$
(f+g)(s)=f(s)+g(s) \quad \forall f, g \in V, s \in S
$$

and

$$
(c f)(s)=c f(s) \quad \forall f \in V, s \in S
$$

We can verify that the elements of V have the properties required of vectors.

First, since $f(x)$ is always an element of the field F, and addition in F is commutative by the properties of a field, we have

$$
f(s)+g(s)=g(s)+f(s) \quad \forall s \in S
$$

so the functions $f+g$ and $g+f$ are the same:

$$
(f+g)=f+g \quad \forall f, g \in V
$$

Second, addition is F is associative, so

$$
f(s)+[g(s)+h(s)]=[f(s)+g(s)]+h(s) \quad \forall s \in S
$$

Define the zero function as the function which assigns the zero element of F (which exists by the properties of a field) to every element of s :

$$
\overrightarrow{0}=f: S \rightarrow F \text { such that } f(s)=0 \quad \forall s \in S
$$

Finally, for each function $f \in V$, let $(-f)$ be defined as

$$
(-f)(s)=-f(s) \quad \forall f \in V, s \in S
$$

In these arguments we use the properties of the field F to establish that a particular statement is true for each element of the domain of an arbitrary element $f \in V$, and therefore holds for the functions themselves. Similar arguments can be used to show that the required properties of scalar multiplication hold.

The space of sequences. Let F be a field and V the set of sequences $\left\{x_{n}\right\}$ whose elements belong to F :

$$
V=\left\{\left(x_{1}, x_{2}, \ldots\right): x_{i} \in F \forall i \in \mathbb{N}\right\}
$$

If we think of a sequence as a function whose domain is \mathbb{N} we can see that this is a special case of the previous example, the space of functions from a set to a field. In this case define the vector sum as the termwise sum of the two sequences:

$$
\left\{(x+y)_{n}\right\}=\left\{x_{n}\right\}+\left\{y_{n}\right\} \quad \forall x, y \in V
$$

and the scalar product is:

$$
\alpha x=\alpha\left\{x_{n}\right\}=\left\{\alpha x_{n}\right\} \quad \forall \alpha \in F, x \in V
$$

The space of real-valued functions on $[-1,1]$. This is another special case of a space of functions from a set $S=[-1,1]$ to a field $F=\mathbb{R}$.

$$
V=\{f:[-1,1] \rightarrow \mathbb{R}\} \quad F=\mathbb{R}
$$

If $f, g \in V$, define:

$$
(f+g)(s)=f(s)+g(s) \quad \forall f, g \in V, s \in[-1,1]
$$

and

$$
(\alpha f)(s)=\alpha f(s) \quad \forall f \in V, \alpha \in \mathbb{R}
$$

1. Norms

Definition 4 (norm). A nonnegative real-valued function $\|\|: V \rightarrow \mathbb{R}$ is called a norm if:

- $\|v\| \geq 0$ and $\|v\|=0 \Leftrightarrow v=\overrightarrow{0}$
- $\|v+w\| \leq\|v\|+\|w\| \quad$ (triangle inequality)
- $\|\alpha v\|=|\alpha|\|x\| \quad \forall \alpha \in F, v \in V$

