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VECTOR SPACES

Preliminaries

Definition 1 (group). A group consists of:

• A set G

• A binary operation + : G × G → G with the following proper-
ties:

x + (y + z) = (x + y) + z ∀x, y, z ∈ G (associativity)
∃0 ∈ G such that a + 0 = 0 + a = a ∀a ∈ G (identity)
∀a ∈ G ∃ a−1 such that a + a−1 = a−1 + a = 0 (inverse)

Definition 2 (field). A field consists of:

• A set F

• A binary operation + : F × F → F with the following proper-
ties:

x + y = y + x ∀x, y ∈ F (additive commutativity)
x + (y + z) = (x + y) + z ∀x, y, z ∈ F (additive associativity)
∃0 ∈ F such that a + 0 = 0 + a = a ∀a ∈ F (additive identity)
∀a ∈ F ∃ a−1 such that a + a−1 = a−1 + a = 0 (additive inverse)

• A binary operation : F ×F → F with the following properties:
xy = yx ∀x, y ∈ F (multiplicative commutativity)
x(yz) = (xy)z ∀x, y, z ∈ F (multiplicative associativity)
∃1 ∈ F such that a1 = 1a = a ∀a ∈ F (multiplicative identity)
∀a ∈ F \ 0 ∃ a−1 such that aa−1 = a−1a = 1 (multiplicative inverse)
x(y + z) = xy + xz ∀x, y, z ∈ F (distributive property)
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2 VECTOR SPACES

Definitions

Definition 3 (vector space). A vector space or linear space consists
of:

• A field F of elements called scalars

• A commutative group V of elements called vectors with respect
to a binary operation +

• A binary operation : F ×V → V called scalar multiplication

that associates with each scalar α ∈ F and vector v ∈ V a
vector αv in such a way that:

1v = v ∀v ∈ V

(αβ)v = α(βv) ∀α, β ∈ F, v ∈ V

α(v + w) = αv + αw ∀α ∈ F, v, w ∈ V

(α + β)v = αv + βv ∀α, β ∈ F, v ∈ V

Note that a vector space is a composite object consisting of a field,
a set of ’vectors’, and two operations with the specified properties. We
say that V is a vector space over the field F . With respecte to the
vector addition operation, V is a commutative (Abelian) group.

Examples

The n-tuple space F n. Let F be any field and let V be the set of all
n-tuples of scalars

V = {(x1, x2, . . . , xn) : xi ∈ F, i = 1, . . . , n}

Then for x, y ∈ V , define:

(x + y) = (x1 + y1, x2 + y2, . . . , xn + yn) ∀x, y ∈ V

and

αx = (αx1, αx2, . . . , αxn) ∀α ∈ F, x ∈ V

Specific examples are Rn where F = R and Cn where F = C.

The space polynomial functions over a field F . Let F be a field
and V the set of polynomial functions of F , that is, the set of all
functions of the form

f(x) = a0 + a1x + · · ·+ anx
n

where a0, . . . , an are fixed scalars in F .

Note that if f and g are polynomials on F and c ∈ F , then f + g

and cf are also polynomials in F .
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The space of m × n matrices F m×n. If F is a field and m, n ∈ N,
let F m×n be the set of all m × n matrices over F . Define

(A + B)ij = Aij + Bij, i = 1, . . . , m, j = 1, . . . , n ∀A, B ∈ V

and

(cA)ij = c(Aij), i = 1, . . . , m, j = 1, . . . , n ∀A ∈ V, c ∈ F

The space of functions from a set to a field. Let F be a field and
S a nonempty set. Let V be the set of all functions from S into F :

V = {f : S → F}

If f, g ∈ V , define:

(f + g)(s) = f(s) + g(s) ∀f, g ∈ V, s ∈ S

and

(cf)(s) = cf(s) ∀f ∈ V, s ∈ S

We can verify that the elements of V have the properties required of
vectors.

First, since f(x) is always an element of the field F , and addition in
F is commutative by the properties of a field, we have

f(s) + g(s) = g(s) + f(s) ∀s ∈ S

so the functions f + g and g + f are the same:

(f + g) = f + g ∀f, g ∈ V

Second, addition is F is associative, so

f(s) + [g(s) + h(s)] = [f(s) + g(s)] + h(s) ∀s ∈ S

Define the zero function as the function which assigns the zero element
of F (which exists by the properties of a field) to every element of s:

~0 = f : S → F such that f(s) = 0 ∀s ∈ S

Finally, for each function f ∈ V , let (−f) be defined as

(−f)(s) = −f(s) ∀f ∈ V, s ∈ S

In these arguments we use the properties of the field F to establish
that a particular statement is true for each element of the domain
of an arbitrary element f ∈ V , and therefore holds for the functions
themselves. Similar arguments can be used to show that the required
properties of scalar multiplication hold.
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The space of sequences. Let F be a field and V the set of sequences
{xn} whose elements belong to F :

V = {(x1, x2, . . .) : xi ∈ F ∀i ∈ N}

If we think of a sequence as a function whose domain is N we can
see that this is a special case of the previous example, the space of
functions from a set to a field. In this case define the vector sum as
the termwise sum of the two sequences:

{(x + y)n} = {xn} + {yn} ∀x, y ∈ V

and the scalar product is:

αx = α{xn} = {αxn} ∀α ∈ F, x ∈ V

The space of real-valued functions on [−1, 1]. This is another
special case of a space of functions from a set S = [−1, 1] to a field
F = R.

V = {f : [−1, 1] → R} F = R

If f, g ∈ V , define:

(f + g)(s) = f(s) + g(s) ∀f, g ∈ V, s ∈ [−1, 1]

and
(αf)(s) = αf(s) ∀f ∈ V, α ∈ R

1. Norms

Definition 4 (norm). A nonnegative real-valued function ‖ ‖ : V → R

is called a norm if:

• ‖v‖ ≥ 0 and ‖v‖ = 0 ⇔ v = ~0
• ‖v + w‖ ≤ ‖v‖ + ‖w‖ (triangle inequality)
• ‖αv‖ = |α| ‖x‖ ∀α ∈ F, v ∈ V


