Contents

$\begin{array}{lll}\text { 1. } & \text { Inner Products } & 1 \\ \text { 1.1. } & \text { Inner Product Spaces } & 2 \\ \text { 1.2. } & \text { Examples } & 2 \\ \text { 1.3. } & \text { Inner products and norms } & 3\end{array}$

INNER PRODUCT SPACES

1. Inner Products

Restricting our attention to linear spaces where the field F is either \mathbb{R} or \mathbb{C}, we will consider vector spaces in which it makes sense to speak of the length of a vector, as well as the angle between vectors and orthogonality.

The mechanism for this is a binary operation or function on vectors that produces a scalar,

$$
(\cdot): V \times V \rightarrow F
$$

which is known as an inner product.
Definition 1 (inner product). Let the field F be either \mathbb{R} or \mathbb{C} and a set V of vectors which together with F form a vector space. An inner product on V is a map

$$
\cdot: V \times V \rightarrow \mathbb{F}
$$

with the following properties:

$$
\begin{array}{ll}
(u+v) \cdot w=u \cdot w+v \cdot w & \forall u, v, w \in V \\
(\alpha u) \cdot v=\alpha(u \cdot v) & \forall \alpha \in F, u, v \in V \\
u \cdot v=(\overline{v \cdot u}) & \forall u, v \in V \\
u \cdot u \geq 0 & \forall u \in V \text { with equality when } u=\overrightarrow{0}
\end{array}
$$

A linear space which has an inner product defined is called an inner product space.

A finite-dimensional inner product space over \mathbb{R} is usually called a Euclidean space.

An inner product space over \mathbb{C} is usually called a unitary space.
Here the bar $\bar{\alpha}$ refers to the complex conjugate, that is, if $\alpha=a+b i$ then $\bar{\alpha}=a-b i$. If $F=\mathbb{R}$, then $b=0$ for all elements of F so each scalar α is its own complex conjugate and the third property reduces to

$$
u \cdot v=v \cdot u
$$

So in a vector space over the reals, inner products are commutative, but this is not the case when the underlying field is \mathbb{C}.

It is necessary to define the third property differently for a complex vector space because if the inner product was commutative in a complex vector space, the fourth property, which requires

$$
u \cdot u \geq 0
$$

would be contradicted by

$$
i u \cdot i u=i(u \cdot i u)=i(i u \cdot u)=i^{2}(u \cdot u)=-u \cdot u
$$

Instead, if $(u \cdot v)=(\overline{v \cdot u})$, the result is

$$
i u \cdot i u=i(u \cdot i u)=i(-i u \cdot u)=-i^{2}(u \cdot u)=u \cdot u
$$

1.1. Inner Product Spaces. A linear space with an inner product defined is called an inner product space.

1.2. Examples.

Example 1. If $V=\mathbb{C}^{n}$, an inner product can be defined by

$$
u \cdot v=u_{1} \overline{v_{1}}+u_{2} \overline{v_{2}}+\cdots+u_{n} \overline{v_{n}}
$$

Example 2. If $V=\mathbb{R}^{n}$, an inner product can be defined by

$$
u \cdot v=u_{1} v_{1}+u_{2} v_{2}+\cdots+u_{n} v_{n}
$$

Example 3. If $V=F^{1 \times n}$ represents the set of $1 \times n$ matrices (or row vectors) whose elements belong to F, and Q is an $n \times n$ invertible matrix over F, then for $u, v \in V$, the following defines an inner product:

$$
u \cdot v=u Q Q^{*} v^{*}
$$

Here A^{*} represents the conjugate transpose of A, that is, if

$$
A=a_{i j} \text { then } A^{*}=\bar{a}_{j i}
$$

If Q is the identity matrix, this inner product is identical to the first example when $F=\mathbb{C}$ and the previous example when $F=\mathbb{R}$.

Example 4. If V is the space of all continuous complex-valued functions on $[0,1]$, an inner product can be defined by

$$
f \cdot g=\int_{0}^{1} f(t) \overline{g(t)} d t
$$

Example 5. If V is the space of all continuous real-valued functions on $[0,1]$, an inner product can be defined by

$$
f \cdot g=\int_{0}^{1} f(t) g(t) d t
$$

1.3. Inner products and norms. If V is an inner product space, the positive square root of the inner product of a vector with itself

$$
\sqrt{u \cdot u}=\|u\|
$$

is called the norm of u with respect to the inner product.

Example 6. If $V=\mathbb{R}^{n}$ equipped with the inner product defined by

$$
u \cdot v=u_{1} v_{1}+\cdots+u_{n} v_{n}
$$

then

$$
\sqrt{u \cdot u}=\sqrt{u_{1}^{2}+u_{2}^{2}+\cdots+u_{n}^{2}}=\|u\|
$$

Example 7. If $V=\mathbb{C}^{n}$ equipped with the inner product defined by

$$
u \cdot v=u_{1} \overline{v_{1}}+\cdots+u_{n} \overline{v_{n}}
$$

then

$$
\sqrt{u \cdot u}=\sqrt{u_{1} \overline{u_{1}}+\cdots+u_{n} \overline{u_{n}}}=\sqrt{\left|u_{1}\right|^{2}+\cdots+\left|u_{n}\right|^{2}}=\|u\|
$$

$\left(\right.$ where $|z|^{2}=z \bar{z}$ for all $\left.z \in \mathbb{C}\right)$

If a linear space over \mathbb{R} or \mathbb{C} has an inner product defined, the inner product induces a norm.

Theorem 1. If V is an inner product space, then for any vectors u and v and any scalar α,
(1) $\|\alpha v\|=|\alpha|\|v\|$
(2) $\|v\| \geq 0 \quad \forall v \in V, \quad\|v\|=0 \Leftrightarrow v=\overrightarrow{0}$
(3) $|u \cdot v| \leq\|u\|\|v\|$
(4) $\|u+v\| \leq\|u\|+\|v\|$

