CONTENTS

THE TOPOLOGY OF \mathbb{R}^n

Recall the following definition of a topology:

Definition 1 (topology). A **topology** is a set X and a collection \mathcal{J} of subsets of X having the following properties:

- \emptyset and X are in \mathcal{J}
- The union of any subcollection of elements of $\mathcal J$ belongs to $\mathbb J$
- The intersection of any *finite* subcollection of \mathcal{J} belongs to \mathcal{J}

The elements of the collection \mathcal{J} are called **open sets**.

Recall that we have defined an inner product on \mathbb{R}^n , and as a result

$$\|x\| = \sqrt{x \cdot x}$$

is a norm on \mathbb{R}^n , and dist(x, y) = ||x - y|| is a metric or distance measure.

We will now proceed to construct a topology on the set \mathbb{R}^n by defining which subsets of \mathbb{R}^n are open. The development follows a standard technique that can be used to define a topology in any metric space, known as the *metric topology*. Many other topologies are possible on \mathbb{R}^n , but only the one we are about to define arises directly from the metric.

Definition 2 (open ball). Let a be an arbitrary element of \mathbb{R}^n and r a positive real number. The **open ball** centered at a with radius r is the set of points

$$B_r(a) = \{ x \in \mathbb{R}^n : ||x - a|| < r \}$$

Now we can define an open set in \mathbb{R}^n as follows:

Definition 3 (open set in \mathbb{R}^n). A subset O of \mathbb{R}^n is said to be **open** if and only if for every $x \in O$ there is an $\epsilon > 0$ such that

$$B_{\epsilon}(x) \subseteq V$$

There are a number of ways to define a closed set. Last semester we defined a closed set in \mathbb{R} as a set that contained its limit points, and then proved a theorem which stated that a subset of \mathbb{R} is closed if and only if its complement in \mathbb{R} is open.

In general, an if and only if theorem can serve as a definition. This time we will start by *defining* a closed set to be the compliment of an open set:

Definition 4 (closed set in \mathbb{R}^n). A subset F of \mathbb{R}^n is said to be **closed** if and only if $\mathbb{R}^n \setminus F$, the compliment of F in \mathbb{R}^n , is open.

Theorem 1. An open ball in \mathbb{R}^n is an open set.

Proof. Let x be an arbitrary element of $B_r(a)$. Then by definition

$$||x - a|| < r$$
 so $0 < r - ||x - a||$

Let
$$\epsilon = r - ||x - a||$$
. Then if $y \in B_{\epsilon}(x)$,
 $||y - x|| < \epsilon$

 \mathbf{SO}

$$||y - a|| \le ||y - x|| + ||x - a|| < \epsilon + ||x - a|| = r$$

which means $y \in B_r(a)$. Since y was an arbitrary choice, every $y \in B_{\epsilon}(x)$ is also in $B_r(a)$, so

$$B_{\epsilon}x \subseteq B_r(a)$$

Theorem 2. The empty set \emptyset and \mathbb{R}^n are both open and closed.

Proof. \mathbb{R}^n is open, because for every $x \in \mathbb{R}^n$ and $\epsilon > 0$, $B_{\epsilon}(X) \subseteq \mathbb{R}^n$. This means \emptyset is closed. However, \emptyset satisfies the condition that it an open ball around every element of \emptyset vacuously. So \emptyset is open, and therefore \mathbb{R}^n is closed. \Box

In topology, open and closed are not mutually exclusive. A set can be open, closed, both open and closed, or neither open nor closed.

2

Definition 5 (singleton). A **singleton** is a set consisting of a single element.

Theorem 3. Singletons are closed in \mathbb{R}^{\ltimes}

Proof. Let x be a single element of \mathbb{R}^n and let y be any other element. Then if $F = \{x\}$, y belongs to the compliment of F. Let $\epsilon = ||x - y||$. Then since $x \neq y$, $\epsilon > 0$, and

$$B_{\epsilon}(y) \subseteq F^{c}$$

Since y was an arbitrary choice, there is an open ball around every element of F^c that is contained in F^c , so F^c is open, and therefore F is closed.