1

1. Linear Functions on \mathbb{R}^n

EUCLIDEAN SPACES

1. Linear Functions on \mathbb{R}^n

Now consider a class of functions known as *linear* functions. The defining characteristic of these functions can be seen in the following special case: Let $T : \mathbb{R} \to \mathbb{R}$ have the following properties:

$$T(x+y) = T(x) + T(y)$$
 and $T(\alpha x) = \alpha T(x) \quad \forall \alpha, x, y \in \mathbb{R}$

The graph of a function of this type is always a straight line passing through the origin, which we can establish by the following result:

Theorem 1. Let $T : \mathbb{R} \to \mathbb{R}$ have the following properties:

$$T(x+y) = T(x) + T(y)$$
 and $T(\alpha x) = \alpha T(x) \quad \forall \alpha, x, y \in \mathbb{R}$

Then there exists an $s \in \mathbb{R}$ such that

$$T(x) = sx \quad \forall x \in \mathbb{R}$$

Proof. Let s = T(1). Then for an arbitrary $x \in \mathbb{R}$,

$$T(x) = T(x \cdot 1)$$

Now both x and 1 are scalars, so we can treat x as a constant multiplier α and write

$$T(x \cdot 1) = xT(1) = xs$$

Now we consider the generalization of this class of functions to Euclidean space \mathbb{R}^n :

Definition 1 (linear function). A function $T : \mathbb{R}^n \to \mathbb{R}^m$ is called *linear* if and only if it satisfies

$$T(x+y) = T(x) + T(y)$$
 and $T(\alpha x) = \alpha T(x) \quad \forall x, y \in \mathbb{R}^n \text{ and } \alpha \in \mathbb{R}$

EUCLIDEAN SPACES

Functions of this type are also called *linear transformations*. Collectively the set of linear transformations from \mathbb{R}^n to \mathbb{R}^m are denoted by

$$\mathcal{L}(\mathbb{R}^n:\mathbb{R}^m)$$

It can be shown that to every element of this set there exists a corresponding $m \times n$ matrix B with the property that

$$T(x) = B[x]^T$$

where $[x]^T$ represents the vector $x = (x_1, x_2, \ldots, x_n)$ written as an $n \times 1$ column vector.

It should be clear from the properties of matrix multiplication that $T(x) = Bx^T$ is indeed a linear function:

$$T(x+y) = B(x+y)^T = Bx^T + By^T$$

and

$$T(\alpha x) = B(\alpha x^T) = (\alpha B)x^T = \alpha(Bx^T) = \alpha T(x)$$

where αB is the matrix B with each element multiplied by α .

As we noted earlier, the set of $m \times n$ real matrices for a group with respect to elementwise addition, and because of this $\mathcal{L}(\mathbb{R}^n : \mathbb{R}^m)$ is a linear space with the corresponding addition operation.

Furthermore, we can define a norm on $\mathcal{L}(\mathbb{R}^n : \mathbb{R}^m)$, called the *operator norm* as follows:

Definition 2 (operator norm). The **operator norm** of an element T of $\mathcal{L}(\mathbb{R}^n : \mathbb{R}^m)$ is the extended real number

$$||T|| = \sup_{||x|| \neq 0} \frac{||T(x)||}{||x||}$$

As it turns out, the operator norm is finite:

Theorem 2. Let T be an element of $\mathcal{L}(\mathbb{R}^n : \mathbb{R}^m)$. Then ||T|| is finite and satisfies

$$||Tx|| \le ||T|| ||x|| \quad \forall x \in \mathbb{R}^n$$

Proof. As noted for each T there is an $m \times n$ real matrix B such that $Tx = Bx^{T}$. If we think of the m rows of matrix B as row vectors b_1, b_2, \ldots, b_m , then we can write Tx as an m-dimensional vector

$$Tx = Bx^{t} = (b_{1} \cdot x, b_{2} \cdot x, \dots, b_{m} \cdot x)$$

and so by definition

$$|Tx||^2 = Tx \cdot Tx = (b_1 \cdot x, \dots, b_m \cdot x) \cdot (b_1 \cdot x, \dots, b_m \cdot x)$$

 \mathbf{so}

$$||Tx||^2 = (b_1 \cdot x)^2 + \dots + (b_m \cdot x)^2$$

Applying the Cauchy-Schwartz inequality we can write

$$||Tx||^{2} = (b_{1} \cdot x)^{2} + \dots + (b_{m} \cdot x)^{2} \le (||b_{1}|| ||x||)^{2} + \dots + (||b_{m}|| ||x||)^{2})$$
$$\le \max\{(||b_{1}||^{2}, \dots, ||b_{m}||^{2}\} \cdot m||x||^{2} = C||x||^{2}$$

So $||Tx||^2$ is bounded, and therefore so is ||Tx||.