Contents

1. Linear Functions on \mathbb{R}^{n}

EUCLIDEAN SPACES

1. Linear Functions on \mathbb{R}^{n}

Now consider a class of functions known as linear functions. The defining characteristic of these functions can be seen in the following special case: Let $T: \mathbb{R} \rightarrow \mathbb{R}$ have the folowing properties:

$$
T(x+y)=T(x)+T(y) \quad \text { and } \quad T(\alpha x)=\alpha T(x) \quad \forall \alpha, x, y \in \mathbb{R}
$$

The graph of a function of this type is always a straight line passing through the origin, which we can establish by the following result:

Theorem 1 . Let $T: \mathbb{R} \rightarrow \mathbb{R}$ have the following properties:

$$
T(x+y)=T(x)+T(y) \quad \text { and } \quad T(\alpha x)=\alpha T(x) \quad \forall \alpha, x, y \in \mathbb{R}
$$

Then there exists an $s \in \mathbb{R}$ such that

$$
T(x)=s x \quad \forall x \in \mathbb{R}
$$

Proof. Let $s=T(1)$. Then for an arbitrary $x \in \mathbb{R}$,

$$
T(x)=T(x \cdot 1)
$$

Now both x and 1 are scalars, so we can treat x as a constant multiplier α and write

$$
T(x \cdot 1)=x T(1)=x s
$$

Now we consider the generalization of this class of functions to Euclidean space \mathbb{R}^{n} :

Definition 1 (linear function). A function $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is called linear if and only if it satisfies
$T(x+y)=T(x)+T(y) \quad$ and $\quad T(\alpha x)=\alpha T(x) \quad \forall x, y \in \mathbb{R}^{n}$ and $\alpha \in \mathbb{R}$

Functions of this type are also called linear transformations. Collectively the set of linear transformations from \mathbb{R}^{n} to \mathbb{R}^{m} are denoted by

$$
\mathcal{L}\left(\mathbb{R}^{n}: \mathbb{R}^{m}\right)
$$

It can be shown that to every element of this set there exists a corresponding $m \times n$ matrix B with the property that

$$
T(x)=B[x]^{T}
$$

where $[x]^{T}$ represents the vector $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ written as an $n \times 1$ column vector.

It should be clear from the properties of matrix multiplication that $T(x)=B x^{T}$ is indeed a linear function:

$$
T(x+y)=B(x+y)^{T}=B x^{T}+B y^{T}
$$

and

$$
T(\alpha x)=B\left(\alpha x^{T}\right)=(\alpha B) x^{T}=\alpha\left(B x^{T}\right)=\alpha T(x)
$$

where αB is the matrix B with each element multiplied by α.
As we noted earlier, the set of $m \times n$ real matrices for a group with respect to elementwise addition, and because of this $\mathcal{L}\left(\mathbb{R}^{n}: \mathbb{R}^{m}\right)$ is a linear space with the corresponding addition operation.

Furthermore, we can define a norm on $\mathcal{L}\left(\mathbb{R}^{n}: \mathbb{R}^{m}\right)$, called the operator norm as follows:

Definition 2 (operator norm). The operator norm of an element T of $\mathcal{L}\left(\mathbb{R}^{n}: \mathbb{R}^{m}\right)$ is the extended real number

$$
\|T\|=\sup _{\|x\| \neq 0} \frac{\|T(x)\|}{\|x\|}
$$

As it turns out, the operator norm is finite:
Theorem 2. Let T be an element of $\mathcal{L}\left(\mathbb{R}^{n}: \mathbb{R}^{m}\right)$. Then $\|T\|$ is finite and satisfies

$$
\|T x\| \leq\|T\|\|x\| \quad \forall x \in \mathbb{R}^{n}
$$

Proof. As noted for each T there is an $m \times n$ real matrix B such that $T x=B x^{T}$. If we think of the m rows of matrix B as row vectors $b_{1}, b_{2}, \ldots, b_{m}$, then we can write $T x$ as an m-dimensional vector

$$
T x=B x^{t}=\left(b_{1} \cdot x, b_{2} \cdot x, \ldots, b_{m} \cdot x\right)
$$

and so by definition

$$
\|T x\|^{2}=T x \cdot T x=\left(b_{1} \cdot x, \ldots, b_{m} \cdot x\right) \cdot\left(b_{1} \cdot x, \ldots, b_{m} \cdot x\right)
$$

so

$$
\|T x\|^{2}=\left(b_{1} \cdot x\right)^{2}+\cdots+\left(b_{m} \cdot x\right)^{2}
$$

Applying the Cauchy-Schwartz inequality we can write

$$
\begin{gathered}
\left.\|T x\|^{2}=\left(b_{1} \cdot x\right)^{2}+\cdots+\left(b_{m} \cdot x\right)^{2} \leq\left(\left\|b_{1}\right\|\|x\|\right)^{2}+\cdots+\left(\left\|b_{m}\right\|\|x\|\right)^{2}\right) \\
\leq \max \left\{\left(\left\|b_{1}\right\|^{2}, \ldots,\left\|b_{m}\right\|^{2}\right\} \cdot m\|x\|^{2}=C\|x\|^{2}\right.
\end{gathered}
$$

So $\|T x\|^{2}$ is bounded, and therefore so is $\|T x\|$.

