Contents

1. \mathbb{R}^{n} as a Linear Space 1
2. Inner Products and Norms on \mathbb{R}^{n} 3
3. Other Norms on \mathbb{R}^{n} 6
4. Inner Products and Angles 7

EUCLIDEAN SPACES

1. \mathbb{R}^{n} as a Linear Space

Now we consider the linear space \mathbb{R}^{n} which consists of:

- The field of real numbers \mathbb{R} (scalars)
- The commutative group (with elementwise addition) of n-tuples of real numbers \mathbb{R}^{n} (vectors)
- The scalar multiplication operation : $\mathbb{R} \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ (elementwise multiplication)

Note that in Definition 8.1, the author defines the sum, difference, and (scalar) product.

The sum is the binary operation

$$
+: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}
$$

defined for $x=\left(x_{1}, \ldots, x_{n}\right)$ and $\left.y=y_{1}, \ldots, y_{n}\right)$ as:

$$
x+y=\left(x_{1}+y_{1}, \ldots, x_{n}+y_{n}\right)
$$

The author defines the difference as the binary operation

$$
-: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}
$$

defined for $x=\left(x_{1}, \ldots, x_{n}\right)$ and $\left.y=y_{1}, \ldots, y_{n}\right)$ as:

$$
x-y=\left(x_{1}-y_{1}, \ldots, x_{n}-y_{n}\right)
$$

Theorem 1. The set of vectors \mathbb{R}^{n} form a commutative group with respect to the operation + , the zero element being the vector of n zeros: $(0, \ldots, 0)$.

Proof. First note that since the scalar field \mathbb{R} is closed under addition,

$$
x+y=\left(x_{1}+y_{1}, \ldots, x_{n}+y_{n}\right) \in \mathbb{R}^{n} \quad \forall x, y \in \mathbb{R}^{n}
$$

so \mathbb{R}^{n} is closed under the operation + .
The addition operation is associative, which follows from the fact that addition in the underlying scalar field \mathbb{R} is associative:

$$
\begin{aligned}
& (x+y)+z=\left(x_{1}+y_{1}, \ldots, x_{n}+y_{n}\right)+\left(z_{1}, \ldots, z_{n}\right)=\left(x_{1}+y_{1}+z_{1}, \ldots, x_{n}+y_{n}+z_{n}\right) \\
& =\left(x_{1}+\left(y_{1}+z_{1}\right), \ldots, x_{n}+\left(y_{n}+z_{n}\right)\right)=x+(y+z) \quad \forall x, y, z \in \mathbb{R}^{n}
\end{aligned}
$$

The existence of a zero element in \mathbb{R}^{n} also follows because the underlying field \mathbb{R} has a zero element, so if we let

$$
\overrightarrow{0}=(0, \ldots, 0)
$$

then
$x+\overrightarrow{0}=\left(x_{1}+0, \ldots, x_{n}+0\right)=\left(0+x_{1}, \ldots, 0+x_{n}\right)==\left(x_{1}, \ldots, x_{n}\right)$
so

$$
x+\overrightarrow{0}=\overrightarrow{0}+x=x \quad \forall x \in \mathbb{R}^{n}
$$

Next, the existence of a additive inverses in \mathbb{R} means there are additive inverses in \mathbb{R}^{n}. Let

$$
x=\left(x_{1}, \ldots, x_{n}\right) \quad \text { and } \quad-x=\left(-x_{1}, \ldots,-x_{n}\right)
$$

where $-x_{i}=(-1) * x_{i}$ is the additive inverse of x_{i} in the scalar field, that is, the unique element of \mathbb{R} such that $x_{i}+\left(-x_{i}\right)=0$. Then
$x+(-x)=\left(x_{1}+\left(-x_{1}\right), \ldots, x_{n}+\left(-x_{n}\right)\right)=(0, \ldots, 0)=\overrightarrow{0} \quad \forall x \in \mathbb{R}^{n}$
Finally, note that because addition in the scalar field \mathbb{R} is commutative, so is addition in \mathbb{R}^{n} :
$x+y=\left(x_{1}+y_{1}, \ldots, x_{n}+y_{n}\right)=\left(y_{1}+x_{1}, \ldots, y_{n}+x_{n}\right)=y+x \quad \forall x, y \in \mathbb{R}^{n}$

Now we can define the difference $x-y$ in terms of the addition operation on the group of vectors \mathbb{R}^{n} as the vector sum of x and the additive inverse of y,

$$
x-y=x+(-y) \quad \forall x, y \in \mathbb{R}^{n}
$$

Multiplication of a vector by a scalar is defined as follows. Let

$$
x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}
$$

be an arbitrary vector and $\alpha \in \mathbb{R}$ an arbitrary scalar. Then

$$
\alpha x=\left(\alpha x_{1}, \ldots, \alpha x_{n}\right)
$$

where the multiplications within the parentheses refer to the product in the underlying field \mathbb{R}, while the multiplication on the left hand side is the "multiplication of a vector by a scalar" operation that the definition of a linear space requires.

2. Inner Products and Norms on \mathbb{R}^{n}

Recall that an inner product on a vector space V over the field \mathbb{R} or \mathbb{C} is a map

$$
\cdot: V \times V \rightarrow \mathbb{F}
$$

with the following properties:

$$
\begin{array}{ll}
(u+v) \cdot w=u \cdot w+v \cdot w & \forall u, v, w \in V \\
(\alpha u) \cdot v=\alpha(u \cdot v) & \forall \alpha \in F, u, v \in V \\
u \cdot v=(\overline{v \cdot u}) & \forall u, v \in V \\
u \cdot u \geq 0 & \forall u \in V \text { with equality when } u=\overrightarrow{0}
\end{array}
$$

where \bar{z} represents the complex conjugate. In the case of $V=\mathbb{R}^{n}$, the underlying field is \mathbb{R}, and we can simply remove the complex conjugate notation (because every real number is its own complex conjugate) and obtain the following definition of an inner product for a vector space over the reals:

An inner product on a vector space V over the field \mathbb{R} is a map

$$
\cdot: V \times V \rightarrow \mathbb{R}
$$

with the following properties:

$$
\begin{array}{ll}
(u+v) \cdot w=u \cdot w+v \cdot w & \forall u, v, w \in V \\
(\alpha u) \cdot v=\alpha(u \cdot v) & \forall \alpha \in \mathbb{R}, u, v \in V \\
u \cdot v=v \cdot u & \forall u, v \in V \\
u \cdot u \geq 0 & \forall u \in V \text { with equality when } u=\overrightarrow{0}
\end{array}
$$

Note that the only difference from the previous definition is that the inner product is now commutative.

Now in \mathbb{R}^{n}, define the inner product $\cdot: \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R}$ as follows.

Definition 1. Suppose $x=\left(x_{1}, \ldots, x_{n}\right)$ and $y=\left(y_{1}, \ldots, y_{n}\right)$ are arbitrary elements of \mathbb{R}^{n}. Define

$$
x \cdot y=x_{1} y_{1}+\cdots+x_{n} y_{n}=\sum_{i=1}^{n} x_{i} y_{i}
$$

Theorem 2. $x \cdot y$ is an inner product on \mathbb{R}^{n}
Proof. Let $u=\left(u_{1}, \ldots, u_{n}\right), v=\left(v_{1}, \ldots, v_{n}\right)$, and $w=\left(w_{1}, \ldots, w_{n}\right)$ be arbitrary elements (vectors) in \mathbb{R}^{n}, and let $\alpha \in \mathbb{R}$ be an arbitrary scalar.

By definition,

$$
(u+v) \cdot w=\sum_{i=1}^{n}\left(u_{i}+v_{i}\right) w_{i}
$$

The components u_{i}, v_{i}, and w_{i} belong to the scalar field \mathbb{R}, so using the algebraic properties of \mathbb{R} we can write

$$
(u+v) \cdot w=\sum_{i=1}^{n}\left(u_{i}+v_{i}\right) w_{i}=\sum_{i=1}^{n} u_{i} w_{i}+\sum_{i=1}^{n} v_{i} w_{i}=u \cdot w+v \cdot w
$$

Also by definition,

$$
(\alpha u) \cdot v=\sum_{i=1}^{n} \alpha u_{i} v_{i}=\alpha \sum_{i=1}^{n} u_{i} v_{i}=\alpha(u \cdot v)
$$

and

$$
u \cdot v=\sum_{i=1}^{n} u_{i} v_{i}=\sum_{i=1}^{n} v_{i} u_{i}=\alpha(v \cdot u)
$$

Finally, again making use of the properties of the real numbers,

$$
u \cdot u=\sum_{i=1}^{n} u_{i}^{2} \geq 0 \quad \text { with equality when } u=\overrightarrow{0}
$$

From a previous set of notes, recall the definition of a norm:
Definition 2 (norm). A nonnegative real-valued function $\|\|: V \rightarrow \mathbb{R}$ is called a norm if:

- $\|v\| \geq 0$ and $\|v\|=0 \Leftrightarrow v=\overrightarrow{0}$
- $\|v+w\| \leq\|v\|+\|w\| \quad$ (triangle inequality)
- $\|\alpha v\|=|\alpha|\|x\| \quad \forall \alpha \in F, v \in V$

In the current setting, we will take F to be \mathbb{R}.
Theorem 3. The positive square root of the inner product of a vector in \mathbb{R}^{n} with itself is a norm for \mathbb{R}^{n}

Proof. From the previous result,

$$
u \cdot u=\sum_{i=1}^{n} u_{i}^{2} \geq 0 \quad \text { with equality when } u=\overrightarrow{0}
$$

so

$$
\|u\|=\sqrt{u \cdot u} \geq 0 \quad \text { with equality when } u=\overrightarrow{0}
$$

and by definition

$$
\alpha u \cdot \alpha u=\sum_{i=1}^{n} \alpha^{2} u_{i}^{2}
$$

so

$$
\|\alpha u\|=\sqrt{\alpha u \cdot \alpha u}=\sqrt{\alpha^{2}(u \cdot u)}=\sqrt{\alpha^{2}} \sqrt{u \cdot u}=|\alpha|\|u\|
$$

Finally, by the definition of the inner product, for any $u, v \in \mathbb{R}^{n}$ and $\alpha \in \mathbb{R}$

$$
\|u+\alpha v\|^{2}=(u+\alpha v) \cdot(u+\alpha v) \geq 0
$$

This can be written as

$$
0 \leq u \cdot u+2 \alpha u \cdot v+\alpha^{2} v \cdot v
$$

If $v=\overrightarrow{0}$ then the precedint inequality reduces to

$$
0 \leq u \cdot u
$$

which is true. Otherwise, let

$$
\alpha=-\frac{u \cdot v}{v \cdot v}
$$

then

$$
0 \leq u \cdot u-2 \frac{u \cdot v}{v \cdot v} u \cdot v+\left(\frac{u \cdot v}{v \cdot v}\right)^{2} v \cdot v
$$

collecting terms we get

$$
0 \leq u \cdot u-\frac{(u \cdot v)^{2}}{v \cdot v}=\|u\|^{2}-\frac{(u \cdot v)^{2}}{\|v\|^{2}}
$$

which can be rearranged to give

$$
(u \cdot v)^{2} \leq\|u\|^{2}\|v\|^{2}
$$

which implies that

$$
|u \cdot v| \leq\|u\|\|v\|
$$

This result is known as the Cauchy-Schwarz inequality, which we will use to establish the third property, the triangle inequality: Suppose $u, v \in \mathbb{R}^{n}$, then

$$
\begin{gathered}
\|u+v\|^{2}=(u+v) \cdot(u+v)=u \cdot u+2 u \cdot v+v \cdot v \\
\leq u \cdot u+2|u \cdot v|+v \cdot v
\end{gathered}
$$

so

$$
\|u+v\|^{2} \leq\|u\|^{2}+2\|u\|\|v\|+\|v\|^{2}=(\|u\|+\|v\|)^{2}
$$

since all quantities are nonnegative, we can write

$$
\|u+v\| \leq\|u\|+\|v\|
$$

which establishes the triangle inequality.
We have previusly shown that if $\|\cdot\|$ is a norm on a linear space V, then for any $u, v \in V$,

$$
\rho(u, v)=\|u-v\|
$$

is a metric on V.
In \mathbb{R}^{n}, with the norm $\|v\|=\sqrt{u \cdot u}$, the metric becomes

$$
\rho(u, v)=\sqrt{(u-v) \cdot(u-v)}=\sqrt{\sum_{i=1}^{n}\left(u_{i}-v_{i}\right)^{2}}
$$

which is known as the Euclidean metric or Euclidean distance.

3. Other Norms on \mathbb{R}^{n}

Other norms can be defined in on \mathbb{R}^{n} in addition to the Euclidean norm:

$$
\|x\|=\sqrt{\sum_{i=1}^{n}\left|x_{i}\right|^{2}}
$$

Examples include the l^{1} norm,

$$
\|x\|_{1}=\sum_{i=1}^{n}\left|x_{i}\right|
$$

the sup-norm:

$$
\|x\|_{\infty}=\max \left(x_{1}, \ldots, x_{n}\right)
$$

and the p-norms for positive integers p :

$$
\|x\|_{p}=\sqrt[p]{\sum_{i=1}^{n}\left|x_{i}\right|^{p}}
$$

4. Inner Products and Angles

If we picture two vectors u and v in \mathbb{R}^{n}, they are usually thought of as arrows emanating from the origin to two different points.

The vector $u-v$ is pictured as the third side of a triangle, the other two being u and v. The "lengths" of the sides are $\|u\|,\|v\|$, and $\|u-v\|$. By the law of cosines, the relationship between the lengths of the sides and angle between the two sides u and v is:

$$
\|u-v\|^{2}=\|u\|^{2}+\|v\|^{2}-2\|u\|\|v\| \cos \theta
$$

Alternatively we can write
$\|u-v\|^{2}=(u-v) \cdot(u-v)=u \cdot u+v \cdot v-2 u \cdot v=\|u\|^{2}+\|v\|^{2}-2 u \cdot v$
and equating these two expressions for $\|u-v\|^{2}$ we get

$$
\|u\|^{2}+\|v\|^{2}-2\|u\|\|v\| \cos \theta=\|u\|^{2}+\|v\|^{2}-2 u \cdot v
$$

or

$$
\|u\|\|v\| \cos \theta=u \cdot v
$$

so that

$$
\cos \theta=\frac{u \cdot v}{\|u\|\|v\|}
$$

This gives rise to the concept of orthogonal vectors as vectors whose inner product is zero.

