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EUCLIDEAN SPACES

1. R
n

as a Linear Space

Now we consider the linear space Rn which consists of:

• The field of real numbers R (scalars)
• The commutative group (with elementwise addition) of n-tuples

of real numbers Rn (vectors)
• The scalar multiplication operation : R×Rn → Rn (elementwise

multiplication)

Note that in Definition 8.1, the author defines the sum, difference,
and (scalar) product.

The sum is the binary operation

+ : R
n → R

n

defined for x = (x1, . . . , xn) and y = y1, . . . , yn) as:

x + y = (x1 + y1, . . . , xn + yn)

The author defines the difference as the binary operation

− : R
n → R

n

defined for x = (x1, . . . , xn) and y = y1, . . . , yn) as:

x − y = (x1 − y1, . . . , xn − yn)

Theorem 1. The set of vectors Rn form a commutative group with
respect to the operation +, the zero element being the vector of n

zeros: (0, . . . , 0).
1



2 EUCLIDEAN SPACES

Proof. First note that since the scalar field R is closed under addition,

x + y = (x1 + y1, . . . , xn + yn) ∈ R
n ∀x, y ∈ R

n

so Rn is closed under the operation +.

The addition operation is associative, which follows from the fact
that addition in the underlying scalar field R is associative:

(x+y)+z = (x1+y1, . . . , xn+yn)+(z1, . . . , zn) = (x1+y1+z1, . . . , xn+yn+zn)

= (x1 + (y1 + z1), . . . , xn + (yn + zn)) = x + (y + z) ∀x, y, z ∈ R
n

The existence of a zero element in R
n also follows because the under-

lying field R has a zero element, so if we let

~0 = (0, . . . , 0)

then

x +~0 = (x1 + 0, . . . , xn + 0) = (0 + x1, . . . , 0 + xn) = = (x1, . . . , xn)

so
x +~0 = ~0 + x = x ∀x ∈ R

n

Next, the existence of a additive inverses in R means there are additive
inverses in Rn. Let

x = (x1, . . . , xn) and − x = (−x1, . . . ,−xn)

where −xi = (−1) ∗ xi is the additive inverse of xi in the scalar field,
that is, the unique element of R such that xi + (−xi) = 0. Then

x+(−x) = (x1+(−x1), . . . , xn+(−xn)) = (0, . . . , 0) = ~0 ∀x ∈ R
n

Finally, note that because addition in the scalar field R is commutative,
so is addition in Rn:

x+y = (x1+y1, . . . , xn+yn) = (y1+x1, . . . , yn+xn) = y+x ∀x, y ∈ R
n

�

Now we can define the difference x − y in terms of the addition
operation on the group of vectors Rn as the vector sum of x and the
additive inverse of y,

x − y = x + (−y) ∀x, y ∈ R
n

Multiplication of a vector by a scalar is defined as follows. Let

x = (x1, . . . , xn) ∈ R
n
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be an arbitrary vector and α ∈ R an arbitrary scalar. Then

αx = (αx1, . . . , αxn)

where the multiplications within the parentheses refer to the product
in the underlying field R, while the multiplication on the left hand
side is the ”multiplication of a vector by a scalar” operation that the
definition of a linear space requires.

2. Inner Products and Norms on Rn

Recall that an inner product on a vector space V over the field R

or C is a map

· : V × V → F

with the following properties:

(u + v) · w = u · w + v · w ∀u, v, w ∈ V

(αu) · v = α(u · v) ∀α ∈ F, u, v ∈ V

u · v = (v · u) ∀u, v ∈ V

u · u ≥ 0 ∀u ∈ V with equality when u = ~0

where z represents the complex conjugate. In the case of V = Rn, the
underlying field is R, and we can simply remove the complex conjugate
notation (because every real number is its own complex conjugate) and
obtain the following definition of an inner product for a vector space
over the reals:

An inner product on a vector space V over the field R is a map

· : V × V → R

with the following properties:

(u + v) · w = u · w + v · w ∀u, v, w ∈ V

(αu) · v = α(u · v) ∀α ∈ R, u, v ∈ V

u · v = v · u ∀u, v ∈ V

u · u ≥ 0 ∀u ∈ V with equality when u = ~0

Note that the only difference from the previous definition is that the
inner product is now commutative.

Now in R
n, define the inner product · : R

n × R
n → R as follows.
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Definition 1. Suppose x = (x1, . . . , xn) and y = (y1, . . . , yn) are arbi-
trary elements of Rn. Define

x · y = x1y1 + · · ·+ xnyn =

n
∑

i=1

xiyi

Theorem 2. x · y is an inner product on Rn

Proof. Let u = (u1, . . . , un), v = (v1, . . . , vn), and w = (w1, . . . , wn)
be arbitrary elements (vectors) in Rn, and let α ∈ R be an arbitrary
scalar.

By definition,

(u + v) · w =

n
∑

i=1

(ui + vi)wi

The components ui, vi, and wi belong to the scalar field R, so using the
algebraic properties of R we can write

(u + v) · w =

n
∑

i=1

(ui + vi)wi =

n
∑

i=1

uiwi +

n
∑

i=1

viwi = u · w + v · w

Also by definition,

(αu) · v =
n

∑

i=1

αuivi = α

n
∑

i=1

uivi = α(u · v)

and

u · v =
n

∑

i=1

uivi =
n

∑

i=1

viui = α(v · u)

Finally, again making use of the properties of the real numbers,

u · u =

n
∑

i=1

u2

i ≥ 0 with equality when u = ~0

�

From a previous set of notes, recall the definition of a norm:

Definition 2 (norm). A nonnegative real-valued function ‖ ‖ : V → R

is called a norm if:

• ‖v‖ ≥ 0 and ‖v‖ = 0 ⇔ v = ~0
• ‖v + w‖ ≤ ‖v‖ + ‖w‖ (triangle inequality)
• ‖αv‖ = |α| ‖x‖ ∀α ∈ F, v ∈ V
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In the current setting, we will take F to be R.

Theorem 3. The positive square root of the inner product of a vector
in R

n with itself is a norm for R
n

Proof. From the previous result,

u · u =

n
∑

i=1

u2

i ≥ 0 with equality when u = ~0

so
‖u‖ =

√
u · u ≥ 0 with equality when u = ~0

and by definition

αu · αu =
n

∑

i=1

α2u2

i

so

‖αu‖ =
√

αu · αu =
√

α2(u · u) =
√

α2
√

u · u = |α|‖u‖

Finally, by the definition of the inner product, for any u, v ∈ Rn and
α ∈ R

‖u + αv‖2 = (u + αv) · (u + αv) ≥ 0

This can be written as

0 ≤ u · u + 2αu · v + α2 v · v

If v = ~0 then the precedint inequality reduces to

0 ≤ u · u

which is true. Otherwise, let

α = −u · v
v · v

then

0 ≤ u · u − 2
u · v
v · v u · v +

(u · v
v · v

)2

v · v

collecting terms we get

0 ≤ u · u − (u · v)2

v · v = ‖u‖2 − (u · v)2

‖v‖2

which can be rearranged to give

(u · v)2 ≤ ‖u‖2‖v‖2
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which implies that
|u · v| ≤ ‖u‖‖v‖

This result is known as the Cauchy-Schwarz inequality, which we will
use to establish the third property, the triangle inequality: Suppose
u, v ∈ Rn, then

‖u + v‖2 = (u + v) · (u + v) = u · u + 2 u · v + v · v

≤ u · u + 2|u · v| + v · v
so

‖u + v‖2 ≤ ‖u‖2 + 2‖u‖‖v‖ + ‖v‖2 = (‖u‖ + ‖v‖)2

since all quantities are nonnegative, we can write

‖u + v‖ ≤ ‖u‖ + ‖v‖

which establishes the triangle inequality. �

We have previusly shown that if ‖ · ‖ is a norm on a linear space V ,
then for any u, v ∈ V ,

ρ(u, v) = ‖u − v‖

is a metric on V .

In R
n, with the norm ‖v‖ =

√
u · u, the metric becomes

ρ(u, v) =
√

(u − v) · (u − v) =

√

√

√

√

n
∑

i=1

(ui − vi)
2

which is known as the Euclidean metric or Euclidean distance.

3. Other Norms on Rn

Other norms can be defined in on Rn in addition to the Euclidean

norm:

‖x‖ =

√

√

√

√

n
∑

i=1

|xi|2

Examples include the l1 norm,

‖x‖1 =
n

∑

i=1

|xi|
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the sup-norm:
‖x‖

∞
= max(x1, . . . , xn)

and the p-norms for positive integers p:

‖x‖p = p

√

√

√

√

n
∑

i=1

|xi|p

4. Inner Products and Angles

If we picture two vectors u and v in Rn, they are usually thought of
as arrows emanating from the origin to two different points.

The vector u− v is pictured as the third side of a triangle, the other
two being u and v. The ”lengths” of the sides are ‖u‖, ‖v‖, and ‖u−v‖.
By the law of cosines, the relationship between the lengths of the sides
and angle between the two sides u and v is:

‖u − v‖2 = ‖u‖2 + ‖v‖2 − 2‖u‖‖v‖ cos θ

Alternatively we can write

‖u−v‖2 = (u−v) · (u−v) = u ·u+v · v−2u · v = ‖u‖2 +‖v‖2−2u · v

and equating these two expressions for ‖u − v‖2 we get

‖u‖2 + ‖v‖2 − 2‖u‖‖v‖ cos θ = ‖u‖2 + ‖v‖2 − 2u · v

or
‖u‖‖v‖ cos θ = u · v

so that
cos θ =

u · v
‖u‖‖v‖

This gives rise to the concept of orthogonal vectors as vectors whose
inner product is zero.


