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EUCLIDEAN SPACES

1. Inner Products

Restricting our attention to linear spaces where the field F is either
R or C, we will consider vector spaces in which it makes sense to speak
of the length of a vector, as well as the angle between vectors and
orthogonality.

The mechanism for this is a binary operation or function on vectors
that produces a scalar,

(·) : V × V → F

which is known as an inner product.

Definition 1 (inner product). Let the field F be either R or C and a
set V of vectors which together with F form a vector space. An inner

product on V is a map

· : V × V → F

with the following properties:

(u + v) · w = u · w + v · w ∀u, v, w ∈ V

(αu) · v = α(u · v) ∀α ∈ F, u, v ∈ V

u · v = (v · u) ∀u, v ∈ V

u · u ≥ 0 ∀u ∈ V with equality when u = ~0

A linear space which has an inner product defined is called an inner

product space.

A finite-dimensional inner product space over R is usually called a
Euclidean space.
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An inner product space over C is usually called a unitary space.

Here the bar α refers to the complex conjugate, that is, if α = a+ bi

then α = a − bi. If F = R, then b = 0 for all elements of F so each
scalar α is its own complex conjugate and the third property reduces
to

u · v = v · u
So in a vector space over the reals, inner products are commutative,
but this is not the case when the underlying field is C.

It is necessary to define the third property differently for a complex
vector space because if the inner product was commutative in a complex
vector space, the fourth property, which requires

u · u ≥ 0

would be contradicted by

iu · iu = i(u · iu) = i(iu · u) = i2(u · u) = −u · u

Instead, if (u · v) = (v · u), the result is

iu · iu = i(u · iu) = i(−iu · u) = −i2(u · u) = u · u

1.1. Inner Product Spaces. A linear space with an inner product
defined is called an inner product space.

1.2. Examples.

Example 1. If V = Cn, an inner product can be defined by

u · v = u1v1 + u2v2 + · · ·+ unvn

Example 2. If V = R
n, an inner product can be defined by

u · v = u1v1 + u2v2 + · · ·+ unvn

Example 3. If V = F 1×n represents the set of 1 × n matrices (or row
vectors) whose elements belong to F , and Q is an n×n invertible matrix
over F , then for u, v ∈ V , the following defines an inner product:

u · v = uQQ∗v∗

Here A∗ represents the conjugate transpose of A, that is, if

A = aij then A∗ = aji
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If Q is the identity matrix, this inner product is identical to the first
example when F = C and the previous example when F = R.

Example 4. If V is the space of all continuous complex-valued functions
on [0, 1], an inner product can be defined by

f · g =

∫

1

0

f(t)g(t)dt

Example 5. If V is the space of all continuous real-valued functions on
[0, 1], an inner product can be defined by

f · g =

∫

1

0

f(t) g(t) dt

1.3. Inner products and norms. If V is an inner product space, the
positive square root of the inner product of a vector with itself

√
u · u = ‖u‖

is called the norm of u with respect to the inner product.

Example 6. If V = Rn equipped with the inner product defined by

u · v = u1v1 + · · ·+ unvn

then
√

u · u =
√

u2

1
+ u2

2
+ · · ·+ u2

n = ‖u‖

Example 7. If V = Cn equipped with the inner product defined by

u · v = u1v1 + · · ·+ unvn

then
√

u · u =
√

u1u1 + · · · + unun =
√

|u1|2 + · · ·+ |un|2 = ‖u‖

(where |z|2 = zz for all z ∈ C)

If a linear space over R or C has an inner product defined, the inner
product induces a norm.
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Theorem 1. If V is an inner product space, then for any vectors u and
v and any scalar α,

(1) ‖αv‖ = |α|‖v‖
(2) ‖v‖ ≥ 0 ∀v ∈ V, ‖v‖ = 0 ⇔ v = ~0
(3) |u · v| ≤ ‖u‖‖v‖
(4) ‖u + v‖ ≤ ‖u‖ + ‖v‖


