Contents

1.	Inner Products	1
1.1.	. Inner Product Spaces	2
1.2.	. Examples	2
1.3.	. Inner products and norms	3

EUCLIDEAN SPACES

1. INNER PRODUCTS

Restricting our attention to linear spaces where the field F is either \mathbb{R} or \mathbb{C} , we will consider vector spaces in which it makes sense to speak of the *length* of a vector, as well as the *angle* between vectors and orthogonality.

The mechanism for this is a binary operation or function on vectors that produces a scalar,

$$(\cdot)$$
 : $V \times V \to F$

which is known as an *inner product*.

Definition 1 (inner product). Let the field F be either \mathbb{R} or \mathbb{C} and a set V of vectors which together with F form a vector space. An **inner product** on V is a map

$$\cdot: V \times V \to \mathbb{F}$$

with the following properties:

$(u+v)\cdot w = u\cdot w + v\cdot w$	$\forall u, v, w \in V$
$(\alpha u) \cdot v = \alpha (u \cdot v)$	$\forall \alpha \in F, \ u, v \in V$
$u \cdot v = (\overline{v \cdot u})$	$\forall u, v \in V$
$u \cdot u \ge 0$	$\forall u \in V \text{ with equality when } u = \vec{0}$

A linear space which has an inner product defined is called an **inner product space**.

A finite-dimensional inner product space over \mathbb{R} is usually called a **Euclidean space**.

EUCLIDEAN SPACES

An inner product space over \mathbb{C} is usually called a **unitary space**.

Here the bar $\overline{\alpha}$ refers to the complex conjugate, that is, if $\alpha = a + bi$ then $\overline{\alpha} = a - bi$. If $F = \mathbb{R}$, then b = 0 for all elements of F so each scalar α is its own complex conjugate and the third property reduces to

$$u \cdot v = v \cdot u$$

So in a vector space over the reals, inner products are commutative, but this is not the case when the underlying field is \mathbb{C} .

It is necessary to define the third property differently for a complex vector space because if the inner product was commutative in a complex vector space, the fourth property, which requires

$$u \cdot u \ge 0$$

would be contradicted by

$$iu \cdot iu = i(u \cdot iu) = i(iu \cdot u) = i^2(u \cdot u) = -u \cdot u$$

Instead, if $(u \cdot v) = (\overline{v \cdot u})$, the result is

$$iu \cdot iu = i(u \cdot iu) = i(-iu \cdot u) = -i^2(u \cdot u) = u \cdot u$$

1.1. Inner Product Spaces. A linear space with an inner product defined is called an inner product space.

1.2. Examples.

Example 1. If $V = \mathbb{C}^n$, an inner product can be defined by

$$u \cdot v = u_1 \overline{v_1} + u_2 \overline{v_2} + \dots + u_n \overline{v_n}$$

Example 2. If $V = \mathbb{R}^n$, an inner product can be defined by

$$u \cdot v = u_1 v_1 + u_2 v_2 + \dots + u_n v_n$$

Example 3. If $V = F^{1 \times n}$ represents the set of $1 \times n$ matrices (or row vectors) whose elements belong to F, and Q is an $n \times n$ invertible matrix over F, then for $u, v \in V$, the following defines an inner product:

$$u \cdot v = uQQ^*v^*$$

Here A^* represents the *conjugate transpose* of A, that is, if

$$A = a_{ij}$$
 then $A^* = \overline{a}_{ji}$

If Q is the identity matrix, this inner product is identical to the first example when $F = \mathbb{C}$ and the previous example when $F = \mathbb{R}$.

Example 4. If V is the space of all continuous complex-valued functions on [0, 1], an inner product can be defined by

$$f \cdot g = \int_0^1 f(t) \overline{g(t)} dt$$

Example 5. If V is the space of all continuous real-valued functions on [0, 1], an inner product can be defined by

$$f \cdot g = \int_0^1 f(t) g(t) dt$$

1.3. Inner products and norms. If V is an inner product space, the positive square root of the inner product of a vector with itself

$$\sqrt{u \cdot u} = \|u\|$$

is called the **norm** of u with respect to the inner product.

Example 6. If $V = \mathbb{R}^n$ equipped with the inner product defined by

$$u \cdot v = u_1 v_1 + \dots + u_n v_n$$

then

$$\sqrt{u \cdot u} = \sqrt{u_1^2 + u_2^2 + \dots + u_n^2} = ||u||$$

Example 7. If $V = \mathbb{C}^n$ equipped with the inner product defined by

$$u \cdot v = u_1 \overline{v_1} + \dots + u_n \overline{v_n}$$

then

$$\sqrt{u \cdot u} = \sqrt{u_1 \overline{u_1} + \dots + u_n \overline{u_n}} = \sqrt{|u_1|^2 + \dots + |u_n|^2} = ||u||$$

(where $|z|^2 = z\overline{z}$ for all $z \in \mathbb{C}$)

If a linear space over \mathbb{R} or \mathbb{C} has an inner product defined, the inner product induces a norm.

Theorem 1. If V is an inner product space, then for any vectors u and v and any scalar $\alpha,$

- $(1) \quad \|\alpha v\| = |\alpha| \|v\|$
- (2) $||v|| \ge 0 \quad \forall v \in V, \quad ||v|| = 0 \Leftrightarrow v = \vec{0}$ (3) $|u \cdot v| \le ||u|| ||v||$ (4) $||u + v|| \le ||u|| + ||v||$