1. Assignment 9

1.1. **Problem 1.** Suppose $\{x_n\}$ is a real sequence and

$$\liminf_{n \to \infty} x_n = L \in \mathbb{R}$$

If $C \in \mathbb{R}$ is a cluster point of x_n , prove that $C \ge L$.

1.2. **Problem 2.** Suppose $\{x_n\}$ is a real sequence with $x_n \to x$ as $n \to \infty$. Show that

$$\liminf_{n \to \infty} x_n = x$$

1.3. **Problem 3.** Let Let $\{x_n\}$ be a real sequence. Prove that if

$$\liminf_{n \to \infty} x_n > x \in \mathbb{R} \quad \text{then} \quad x_n > x \quad \text{when } n \text{ is large}$$

1.4. Problem 4. If the statement

If
$$\sum_{k=1}^{\infty} a_k$$
 converges absolutely and $a_k \to 0$ as $k \to \infty$

then

$$\limsup_{k \to \infty} |a_k|^{1/k} < 1$$

is true prove it. If it is false, give a counterexample.