1. ASSIGNMENT 8

1.1. Problem 1. Prove Theorem 6.16 i): If $a_{k} \geq 0, b_{k}>0$ for large k, and $\lim _{k \rightarrow \infty} a_{k} / b_{k} \in(0, \infty)$, then

$$
\sum_{k=1}^{\infty} a_{k} \text { converges if and only if } \sum_{k=1}^{\infty} b_{k} \text { converges }
$$

1.2. Problem 2. Suppose a_{k} and b_{k} are nonnegative for all $k \in \mathbb{N}$. Prove that

$$
\text { If } \sum_{k=1}^{\infty} a_{k} \text { and } \quad \sum_{k=1}^{\infty} b_{k} \text { converge, then } \sum_{k=1}^{\infty} a_{k} b_{k} \text { converges }
$$

1.3. Problem 3. Let

$$
s_{n}=\sum_{k=1}^{n} \frac{(-1)^{k+1}}{k} \quad n \in \mathbb{N}
$$

Prove that $s_{2 n}$ is strictly increasing, $s_{2 n+1}$ is strictly decreasing, and $s_{2 n+1}-s_{2 n} \rightarrow 0$ as $n \rightarrow \infty$.
1.4. Problem 4. Suppose $a_{k} \geq 0$ for k sufficiently large and $\sum a_{k} / k$ converges. Prove that

$$
\lim _{j \rightarrow \infty} \sum_{k=1}^{\infty} \frac{a_{k}}{j+k}=0
$$

