1. Assignment 5

1.1. **Problem 1.** Determine whether the following limit exists. If it does not exist, explain why not, and if it does exist, find the limit.

$$\lim_{x \to (0,0)} \frac{\sin x \sin y}{x^2 + y^2}$$

(Hint: consider what happens as x approaches (0,0) along the line x = y and along the x and y axes).

1.2. **Problem 2.** (Sequential characterization of limits) Prove Theorem 9.5 part ii):

Theorem. Let $a \in \mathbb{R}^n$, $V \subseteq \mathbb{R}^n$ be an open set containing a, and $f: V \setminus a \to \mathbb{R}^m$ a function. Then

$$L = \lim_{x \to a}$$

exists if and only if $f(x_k) \to L$ as $k \to \infty$ for every sequence $\{x_k\} \in V \setminus \{a\}$ that converges to a as $k \to \infty$.

1.3. **Problem 3.** Prove that uniformly continuous functions in \mathbb{R}^n preserve Cauchy sequences. (hint: See Lemma 3.38)

1.4. **Problem 4.** (9.48)

For $D \subseteq E \subseteq \mathbb{R}^n$ suppose D is dense in E, that is, $\overline{D} = E$. If $f : D \to \mathbb{R}^m$ is uniformly continuous on D, prove that f has a continuous extension

 $g: E \to \mathbb{R}^m$ such that $g(x) = f(x) \quad \forall x \in D$

(hint: use the result of problem 3 and see Theorem 3.40)