1. Assignment 3

1.1. **Problem 1.** Using the definition of a convergent sequence in \mathbb{R}^n , show that the following sequence converges:

$$x_k = \left(\frac{1}{k}, 1 - \frac{1}{k^2}\right)$$

1.2. **Problem 2.** Suppose x_n and y_n are sequences in \mathbb{R}^n with $x_n \to \vec{0}$ and y_n bounded. Show that the sequence of inner products

 $x_n \cdot y_n$

converges to zero.

1.3. **Problem 3.** A subset E of \mathbb{R}^n is called **sequentially compact** if and only if every sequence $x_k \in E$ has a convergent subsequence whose limit is in E.

Prove that \mathbb{R}^n is *not* sequentially compact.

1.4. **Problem 4.** Let $E \subseteq \mathbb{R}^n$. A point $a \in \mathbb{R}^n$ is called a **cluster** point of *E* if, for every r > 0,

 $B_r(a)$ contains infinitely many points of E for any r > 0

Prove that every bounded infinite subset of \mathbb{R}^n has at least one cluster point. (Hint: a bounded infinite subset must have an infinite number of *distinct* points).