1. ASSIGNMENT 1

1.1. Problem 1. Recall the definition of the operator norm: For any linear transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$, that is, for any $T \in \mathcal{L}\left(\mathbb{R}^{n}, \mathbb{R}^{m}\right)$,

$$
\|T\|=\sup _{\|x\| \neq 0} \frac{\|T x\|}{\|x\|}
$$

Some authors define the operator norm as:

$$
\|T\|_{[1]}=\sup _{\|x\|=1}\|T x\|
$$

(Recall that the notation $T x$ is shorthand for $T(x)$). Show that the two definitions result in the same value.
hint: use some or all of the following facts:
If $A \subseteq B \subseteq[0, \infty)$, then

$$
\begin{gathered}
\sup _{x \in A} x \leq \sup _{x \in B} x \\
\left\|\frac{x}{\|x\|}\right\|=1 \quad \forall x \in \mathbb{R}^{n} \backslash 0
\end{gathered}
$$

and, by the properties of linear functions,

$$
\frac{1}{\alpha} T(x)=T\left(\frac{x}{\alpha}\right) \quad \forall \alpha \in \mathbb{R}^{+}, T \in \mathcal{L}\left(\mathbb{R}^{n}, \mathbb{R}^{m}\right)
$$

1.2. Problem 2. Show that the linear transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ corresponding to the matrix

$$
B=\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right] \quad 0 \leq \theta<2 \pi
$$

preserves lengths, that is to say, for any $x \in \mathbb{R}^{2}$,

$$
\|B x\|=\|x\|
$$

1.3. Problem 3. Show that the l^{1}-norm defined on \mathbb{R}^{n} by:

$$
\|x\|_{1}=\sum_{i=1}^{n}\left|x_{i}\right|
$$

satisfies the following conditions for all $x, y \in \mathbb{R}^{n}$ and $\alpha \in \mathbb{R}$,

- $\|x\|_{1} \geq 0$ and $\|x\|_{1}=0 \Leftrightarrow x=\overrightarrow{0}$
- $\|\alpha x\|_{1}=|\alpha|\|x\|_{1}$
- $\|x+y\|_{1} \leq\|x\|_{1}+\|y\|_{1}$
1.4. Problem 4. Show that the sup-norm defined on \mathbb{R}^{n} by:

$$
\|x\|_{\infty}=\max \left\{\left|x_{1}\right|, \ldots,\left|x_{n}\right|\right\}
$$

satisfies the following conditions for all $x, y \in \mathbb{R}^{n}$ and $\alpha \in \mathbb{R}$,

- $\|x\|_{\infty} \geq 0$ and $\|x\|_{\infty}=0 \Leftrightarrow x=\overrightarrow{0}$
- $\|\alpha x\|_{\infty}=|\alpha|\|x\|_{\infty}$
- $\|x+y\|_{\infty} \leq\|x\|_{\infty}+\|y\|_{\infty}$

