1.1. Problem 1. Show that if $E=(0,1)$, the sequence of functions $f_{n}: E \rightarrow \mathbb{R}$ defined by

$$
f_{n}(x)=\frac{1}{n x}, \quad n \in \mathbb{N}
$$

converges to $f(x)=0$ pointwise, but not uniformly on E
1.2. Problem 2. Supose $f: \mathbb{R} \rightarrow \mathbb{R}$ is uniformly continuous and $\left\{y_{n}\right\}$ is a real sequence that converges to zero as $n \rightarrow \infty$. Show that the sequence of functions f_{n} defined by:

$$
f_{n}(x)=f\left(x+y_{n}\right) \quad x \in \mathbb{R}, n \in \mathbb{N}
$$

converges uniformly to f on \mathbb{R}
1.3. Problem 3. Let $E \subseteq \mathbb{R}$ be a nonempty set and $f_{n}: E \rightarrow \mathbb{R}$ a sequence of functions that converge to f uniformly on E :

$$
f_{n}(x) \rightarrow f(x) \quad \text { uniformly as } \quad n \rightarrow \infty
$$

Show that uniform convergence preserves uniform continuity, that is, if each f_{n} is uniformly continuous on E, then so is f.
1.4. Problem 4. Suppose $f_{n} \rightarrow f$ and $g_{n} \rightarrow g$ as $n \rightarrow \infty$ uniformly on $E \subseteq \mathbb{R}$. Prove that if $f: E \rightarrow \mathbb{R}$ and $g: E \rightarrow \mathbb{R}$ are bounded on $E \subseteq \mathbb{R}$, then

$$
f_{n} g_{n} \rightarrow f g \quad \text { uniformly on } E
$$

Hint: Use the results of problem 7.1.3. You do not have to prove them.

