1. Assignment 1

1.1. Problem 1. Recall the following definitions from the class notes:

Definition (vector space). A vector space or linear space consists of:

- A field F of elements called scalars
- A commutative group V of elements called **vectors** with respect to a binary operation +
- A binary operation : $F \times V \to V$ called scalar multiplication that associates with each scalar $\alpha \in F$ and vector $v \in V$ a vector αv in such a way that:

 $1v = v \quad \forall v \in V$ $(\alpha\beta)v = \alpha(\beta v) \quad \forall \alpha, \beta \in F, v \in V$ $\alpha(v+w) = \alpha v + \alpha w \quad \forall \alpha \in F, v, w \in V$ $(\alpha+\beta)v = \alpha v + \beta v \quad \forall \alpha, \beta \in F, v \in V$

Definition (norm). A nonnegative real-valued function $|| || : V \to \mathbb{R}$ is called a **norm** if:

- $||v|| \ge 0$ and $||v|| = 0 \Leftrightarrow v = \vec{0}$
- $||v + w|| \le ||v|| + ||w||$ (triangle inequality)
- $\|\alpha v\| = |\alpha| \|x\| \quad \forall \alpha \in F, \ v \in V$

Define convergence of a sequence v_n of vectors in a normed linear space V with norm $\|\cdot\|$ as follows:

We say that $\{v_n\}$ converges to $v \in V$ and write

$$\lim_{n \to \infty} v_n = v \quad \text{or} \quad v_n \to v \text{ as } n \to \infty$$

if for every $\epsilon > 0$ there exists an $N \in \mathbb{N}$ such that

$$||v_n - v|| < \epsilon$$
 for every $n \ge N$

Suppose u_n and v_n are sequences in a normed linear space V. Show that if

$$\lim_{n \to \infty} u_n = u \quad \text{and} \quad \lim_{n \to \infty} v_n = v$$

and $w_n = u_n + v_n$. Then

$$\lim_{n \to \infty} w_n = w = u + v$$

1.2. **Problem 2.** With reference to the definition of convergence in a normed linear space in Problem 1, show that a sequence v_n in a normed linear space V with norm $\|\cdot\|$ can have at most one limit.

1.3. **Problem 3.** Suppose V is a normed linear space with norm $\|\cdot\|$. We say that a sequence of vectors v_n is *bounded* if there exists a real number M such that

$$||v_n|| \leq M \quad \forall n \in \mathbb{N}$$

With reference to the definition of convergence in a normed linear space in Problem 1, show that if a sequence v_n in a normed linear space is convergent with $v_n \to v$ as $n \to \infty$, then it is bounded. You may assume ||v|| is finite.

1.4. Problem 4. Recall the following definition from the class notes:

Definition (inner product). Let V be a linear space over the field F, where F is either \mathbb{R} or \mathbb{C} . An **inner product** on V is a map

 $\cdot: V \times V \to \mathbb{F}$

with the following properties:

$$\begin{array}{ll} (u+v) \cdot w = u \cdot w + v \cdot w & \forall u, v, w \in V \\ (\alpha u) \cdot v = \alpha (u \cdot v) & \forall \alpha \in F, \ u, v \in V \\ u \cdot v = (\overline{v \cdot u}) & \forall u, v \in V \\ u \cdot u \ge 0 & \forall u \in V \ \text{with equality when } u = \vec{0} \end{array}$$

where \overline{z} denotes the complex conjugate of z, that is, if z = a + bi then $\overline{z} = a - bi$.

Suppose V is an inner product space over \mathbb{R} . Show that

 $u \cdot \alpha v = \alpha(u \cdot v) \quad \forall \alpha \in \mathbb{R}, \ u, v \in V$