

Gene Quinn

While we understand a **set** to be a collection of objects, we will not attempt a formal definition of a set

Sets

While we understand a **set** to be a collection of objects, we will not attempt a formal definition of a set

This approach is sometimes called *naiive* set theory.

Sets

While we understand a **set** to be a collection of objects, we will not attempt a formal definition of a set

This approach is sometimes called *naiive* set theory.

Practically speaking, a set is such a basic concept that attempts to define it amount to simply giving a synomym.

Sets

The key concept for elements of a set is *membership* in the set.

The key concept for elements of a set is *membership* in the set.

Given a set and an arbitrary object, we must be able to decide whether the object belongs to the set or not.

The key concept for elements of a set is *membership* in the set.

Given a set and an arbitrary object, we must be able to decide whether the object belongs to the set or not.

In this case the set is said to be **well defined**

Notation

By convention, we will use **upper case** letters to denote a set, *S* being the letter of choice in many cases.

Notation

By convention, we will use **upper case** letters to denote a set, *S* being the letter of choice in many cases.

A **lower case** letter will designate a member or *element* of a set.

Notation

By convention, we will use **upper case** letters to denote a set, *S* being the letter of choice in many cases.

A **lower case** letter will designate a member or *element* of a set.

The symbol \in is used to indicate that an element belongs to a set:

$$x \in S \quad \text{is read:} \quad \begin{cases} "x \text{ belongs to } S" \\ \text{or} \\ "x \text{ is in } S" \\ \text{or} \\ "x \text{ is an element of } S" \end{cases}$$

One way of describing a set is to list its elements surrounded by *curly brackets* {}: The set of natural numbers less than 10 would be described by the notation

$$S = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$$

One way of describing a set is to list its elements surrounded by *curly brackets* {}: The set of natural numbers less than 10 would be described by the notation

$$S = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$$

When the set is so large a full list is impractical, *ellipsis* (three dots) can sometimes be used:

$$\mathbb{N} = \{1, 2, 3, 4, \ldots\}$$

One way of describing a set is to list its elements surrounded by *curly brackets* {}: The set of natural numbers less than 10 would be described by the notation

$$S = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$$

When the set is so large a full list is impractical, *ellipsis* (three dots) can sometimes be used:

$$\mathbb{N} = \{1, 2, 3, 4, \ldots\}$$

If ellipses are used, it should be obvious what the pattern is:

$$O = \{1, 3, 5, 7, \ldots\} \quad E = \{2, 4, 6, 8, \ldots\}$$

Another way of describing a set is to give a rule or *defining property* for inclusion. The set of real numbers less than 10 would be described by the notation

$$S = \{x \mid x < 10\}$$

Another way of describing a set is to give a rule or *defining property* for inclusion. The set of real numbers less than 10 would be described by the notation

$$S = \{x \mid x < 10\}$$

This would be read *The set of (all)* x such that x < 10

Another way of describing a set is to give a rule or *defining property* for inclusion. The set of real numbers less than 10 would be described by the notation

$$S = \{x \mid x < 10\}$$

This would be read The set of (all) x such that x < 10

This is known as set builder notation.

Equality of Sets

A set is completely determined by its members or elements.

Equality of Sets

A set is completely determined by its members or elements.

Equality of sets is defined as follows:

Two sets S and T are equal if and only if they have exactly the same elements

Equality of Sets

A set is completely determined by its members or elements.

Equality of sets is defined as follows:

Two sets S and T are equal if and only if they have exactly the same elements

Formally,

S = T if and only if $(x \in S \text{ if and only if } x \in T)$

The Universal Set

The set of all elements under consideration is called the **universal set**

The Universal Set

The set of all elements under consideration is called the **universal set**

In some cases, the universal set will be explicitly stated, as in

 $S = \{n \mid n \in \mathbb{N} \text{ and } n < 10\}$

The Universal Set

The set of all elements under consideration is called the **universal set**

In some cases, the universal set will be explicitly stated, as in

$$S = \{ n \mid n \in \mathbb{N} \text{ and } n < 10 \}$$

In other cases, it will be understood to be, say, the real numbers, from the context:

$$T = \{x \mid x < 5\}$$

usually means

$$T = \{ x \mid x \in \mathbb{R} \text{ and } x < 5 \}$$

The Empty Set

As it turns out, the idea of a set that does not contain *anything* is an extremely useful concept.

The Empty Set

As it turns out, the idea of a set that does not contain *anything* is an extremely useful concept.

The set with no elements is called the empty set or null set

The Empty Set

As it turns out, the idea of a set that does not contain *anything* is an extremely useful concept.

The set with no elements is called the **empty set** or **null set**

The null set is denoted by the symbol \emptyset .

Set Intersection

The **intersection** of two sets, denoted by \cap , is the set that consists of all elements belonging to both sets:

 $x \in S \cap T$ if and only if $x \in S$ and $x \in T$

Set Intersection

The **intersection** of two sets, denoted by \cap , is the set that consists of all elements belonging to both sets:

```
x \in S \cap T if and only if x \in S and x \in T
```

In set builder notation,

$$S \cap T = \{ x \mid x \in S \text{ and } x \in T \}$$

Set Union

The **union** of two sets, denoted by \cup , is the set that consists of all elements that belong to at least one of the sets:

 $x \in S \cup T$ if and only if $x \in S$ or $x \in T$

Set Union

The **union** of two sets, denoted by \cup , is the set that consists of all elements that belong to at least one of the sets:

```
x \in S \cup T if and only if x \in S or x \in T
```

In set builder notation,

$$S \cup T = \{ x \mid x \in S \quad \text{or} \quad x \in T \}$$

S is said to be a **subset** of T when every member of S is also in T

S is said to be a **subset** of T when every member of S is also in T

The notations $S \subset T$ and $S \subseteq T$ are used to denote subsets.

S is said to be a **subset** of T when every member of S is also in T

The notations $S \subset T$ and $S \subseteq T$ are used to denote subsets.

The \subseteq notation explicitly indicates that the two sets may in fact be equal.

S is said to be a **subset** of T when every member of S is also in T

The notations $S \subset T$ and $S \subseteq T$ are used to denote subsets.

The \subseteq notation explicitly indicates that the two sets may in fact be equal.

The \subseteq notation is used in the Abbott text but not in the Esty text.

Complements

The **complement** of a set S, denoted by S^c , is the set of all elements in the universal set \mathcal{U} that **do not** belong to S.

Complements

The **complement** of a set S, denoted by S^c , is the set of all elements in the universal set \mathcal{U} that **do not** belong to S.

In words, $x \in S^c$ if and only if $x \notin S$ and $x \in \mathcal{U}$

Complements

The **complement** of a set S, denoted by S^c , is the set of all elements in the universal set \mathcal{U} that **do not** belong to S.

In words, $x \in S^c$ if and only if $x \notin S$ and $x \in \mathcal{U}$

In set builder notation,

$$S^c = \{ x \mid x \in \mathcal{U} \text{ and } x \notin S \}$$

Given two sets S and T, it is sometimes useful to describe the set obtained by **excluding** members of T from S.

Given two sets S and T, it is sometimes useful to describe the set obtained by **excluding** members of T from S.

This is called **setminus** and denoted by $S \setminus T$.

Given two sets S and T, it is sometimes useful to describe the set obtained by **excluding** members of T from S.

This is called **setminus** and denoted by $S \setminus T$.

In words, $S \setminus T$ is the set consisting of all elements of S that *do not* belong to T.

Given two sets S and T, it is sometimes useful to describe the set obtained by **excluding** members of T from S.

This is called **setminus** and denoted by $S \setminus T$.

In words, $S \setminus T$ is the set consisting of all elements of S that *do not* belong to T.

In set builder notation,

$$S \setminus T = \{ x \mid x \in S \text{ and } x \notin T \}$$