Sets

Gene Quinn

Sets

While we understand a set to be a collection of objects, we will not attempt a formal definition of a set

Sets

While we understand a set to be a collection of objects, we will not attempt a formal definition of a set

This approach is sometimes called naiive set theory.

Sets

While we understand a set to be a collection of objects, we will not attempt a formal definition of a set

This approach is sometimes called naiive set theory.
Practically speaking, a set is such a basic concept that attempts to define it amount to simply giving a synomym.

Sets

The key concept for elements of a set is membership in the set.

Sets

The key concept for elements of a set is membership in the set.

Given a set and an arbitrary object, we must be able to decide whether the object belongs to the set or not.

Sets

The key concept for elements of a set is membership in the set.

Given a set and an arbitrary object, we must be able to decide whether the object belongs to the set or not.

In this case the set is said to be well defined

Notation

By convention, we will use upper case letters to denote a set, S being the letter of choice in many cases.

Notation

By convention, we will use upper case letters to denote a set, S being the letter of choice in many cases.

A lower case letter will designate a member or element of a set.

Notation

By convention, we will use upper case letters to denote a set, S being the letter of choice in many cases.

A lower case letter will designate a member or element of a set.

The symbol \in is used to indicate that an element belongs to a set:

Describing Sets

One way of describing a set is to list its elements surrounded by curly brackets $\}$: The set of natural numbers less than 10 would be described by the notation

$$
S=\{1,2,3,4,5,6,7,8,9\}
$$

Describing Sets

One way of describing a set is to list its elements surrounded by curly brackets $\}$: The set of natural numbers less than 10 would be described by the notation

$$
S=\{1,2,3,4,5,6,7,8,9\}
$$

When the set is so large a full list is impractical, ellipsis (three dots) can sometimes be used:

$$
\mathbb{N}=\{1,2,3,4, \ldots\}
$$

Describing Sets

One way of describing a set is to list its elements surrounded by curly brackets $\}$: The set of natural numbers less than 10 would be described by the notation

$$
S=\{1,2,3,4,5,6,7,8,9\}
$$

When the set is so large a full list is impractical, ellipsis (three dots) can sometimes be used:

$$
\mathbb{N}=\{1,2,3,4, \ldots\}
$$

If ellipses are used, it should be obvious what the pattern is:

$$
O=\{1,3,5,7, \ldots\} \quad E=\{2,4,6,8, \ldots\}
$$

Describing Sets

Another way of describing a set is to give a rule or defining property for inclusion. The set of real numbers less than 10 would be described by the notation

$$
S=\{x \mid x<10\}
$$

Describing Sets

Another way of describing a set is to give a rule or defining property for inclusion. The set of real numbers less than 10 would be described by the notation

$$
S=\{x \mid x<10\}
$$

This would be read The set of (all) x such that $x<10$

Describing Sets

Another way of describing a set is to give a rule or defining property for inclusion. The set of real numbers less than 10 would be described by the notation

$$
S=\{x \mid x<10\}
$$

This would be read The set of (all) x such that $x<10$
This is known as set builder notation.

Equality of Sets

A set is completely determined by its members or elements.

Equality of Sets

A set is completely determined by its members or elements.
Equality of sets is defined as follows:
Two sets S and T are equal if and only if they have exactly the same elements

Equality of Sets

A set is completely determined by its members or elements.
Equality of sets is defined as follows:
Two sets S and T are equal if and only if they have exactly the same elements

Formally,

$$
S=T \quad \text { if and only if } \quad(x \in S \text { if and only if } x \in T)
$$

The Universal Set

The set of all elements under consideration is called the universal set

The Universal Set

The set of all elements under consideration is called the universal set

In some cases, the universal set will be explicitly stated, as in

$$
S=\{n \mid n \in \mathbb{N} \quad \text { and } \quad n<10\}
$$

The Universal Set

The set of all elements under consideration is called the universal set

In some cases, the universal set will be explicitly stated, as in

$$
S=\{n \mid n \in \mathbb{N} \quad \text { and } \quad n<10\}
$$

In other cases, it will be understood to be, say, the real numbers, from the context:

$$
T=\{x \mid x<5\}
$$

usually means

$$
T=\{x \mid x \in \mathbb{R} \quad \text { and } \quad x<5\}
$$

The Empty Set

As it turns out, the idea of a set that does not contain anything is an extremely useful concept.

The Empty Set

As it turns out, the idea of a set that does not contain anything is an extremely useful concept.

The set with no elements is called the empty set or null set

The Empty Set

As it turns out, the idea of a set that does not contain anything is an extremely useful concept.

The set with no elements is called the empty set or null set
The null set is denoted by the symbol \emptyset.

Set Intersection

The intersection of two sets, denoted by \cap, is the set that consists of all elements belonging to both sets:
$x \in S \cap T$ if and only if $x \in S$ and $x \in T$

Set Intersection

The intersection of two sets, denoted by \cap, is the set that consists of all elements belonging to both sets:

$$
x \in S \cap T \text { if and only if } x \in S \text { and } x \in T
$$

In set builder notation,

$$
S \cap T=\{x \mid x \in S \quad \text { and } \quad x \in T\}
$$

Set Union

The union of two sets, denoted by \cup, is the set that consists of all elements that belong to at least one of the sets:
$x \in S \cup T$ if and only if $x \in S$ or $x \in T$

Set Union

The union of two sets, denoted by \cup, is the set that consists of all elements that belong to at least one of the sets:

$$
x \in S \cup T \text { if and only if } x \in S \text { or } x \in T
$$

In set builder notation,

$$
S \cup T=\{x \mid x \in S \quad \text { or } \quad x \in T\}
$$

Subsets

S is said to be a subset of T when every member of S is also in T

Subsets

S is said to be a subset of T when every member of S is also in T

The notations $S \subset T$ and $S \subseteq T$ are used to denote subsets.

Subsets

S is said to be a subset of T when every member of S is also in T

The notations $S \subset T$ and $S \subseteq T$ are used to denote subsets.
The \subseteq notation explicitly indicates that the two sets may in fact be equal.

Subsets

S is said to be a subset of T when every member of S is also in T

The notations $S \subset T$ and $S \subseteq T$ are used to denote subsets.
The \subseteq notation explicitly indicates that the two sets may in fact be equal.

The \subseteq notation is used in the Abbott text but not in the Esty text.

Complements

The complement of a set S, denoted by S^{c}, is the set of all elements in the universal set \mathcal{U} that do not belong to S.

Complements

The complement of a set S, denoted by S^{c}, is the set of all elements in the universal set \mathcal{U} that do not belong to S.

In words, $x \in S^{c}$ if and only if $x \notin S$ and $x \in \mathcal{U}$

Complements

The complement of a set S, denoted by S^{c}, is the set of all elements in the universal set \mathcal{U} that do not belong to S.

In words, $x \in S^{c}$ if and only if $x \notin S$ and $x \in \mathcal{U}$
In set builder notation,

$$
S^{c}=\{x \mid x \in \mathcal{U} \quad \text { and } \quad x \notin S\}
$$

Setminus

Given two sets S and T, it is sometimes useful to describe the set obtained by excluding members of T from S.

Setminus

Given two sets S and T, it is sometimes useful to describe the set obtained by excluding members of T from S.

This is called setminus and denoted by $S \backslash T$.

Setminus

Given two sets S and T, it is sometimes useful to describe the set obtained by excluding members of T from S.

This is called setminus and denoted by $S \backslash T$.
In words, $S \backslash T$ is the set consisting of all elements of S that do not belong to T.

Setminus

Given two sets S and T, it is sometimes useful to describe the set obtained by excluding members of T from S.

This is called setminus and denoted by $S \backslash T$.
In words, $S \backslash T$ is the set consisting of all elements of S that do not belong to T.

In set builder notation,

$$
S \backslash T=\{x \mid x \in S \quad \text { and } \quad x \notin T\}
$$

