1. SEQuences

1.1. Note on Remark 1.27. This remark states that

If $x>1$ and $x \notin \mathbb{N}$, there exists an $n \in \mathbb{N}$ such that $n<x<n+1$
Proof. By the Archimedean principle (with $a=1$) there exists an $m \in$ \mathbb{N} such that $x<m$, so the set of all natural numbers greater than x is not empty:

$$
E=\{m \in \mathbb{N}: x<m\} \quad \neq \emptyset
$$

By the Well-ordering principle, E has a least element $m_{0} \in E$, and because m_{0} belongs to $E, x<m_{0}$. This means that

$$
m_{0}-1 \leq x
$$

since $m_{0}-1$ cannot be in E and be less than m_{0}, the least element of E.

By hypothesis, $x \notin \mathbb{N}$, and since $m_{0}-1 \in \mathbb{N}$, it must be that $m_{0}-1 \neq x$. Together with the fact that $m_{0}-1 \leq x$, we conclude that

$$
m_{0}-1<x
$$

Denoting $m_{0}-1$ by n, we can now write

$$
n<x<n+1
$$

1.2. The Squeeze Theorem.

Theorem (Squeeze Theorem). Let $\left\{x_{n}\right\},\left\{y_{n}\right\}$, and $\left\{w_{n}\right\}$ be real sequences. Suppose $x_{n} \rightarrow a$ and $y_{n} \rightarrow a$ as $n \rightarrow \infty$, and there exists an $N_{0} \in \mathbb{N}$ such that

$$
x_{n} \leq w_{n} \leq y_{n} \quad \text { for } n \geq N_{0}
$$

Then $w_{n} \rightarrow a$ as $n \rightarrow \infty$.
Proof. By hypothesis, $x_{n} \rightarrow a$ as $n \rightarrow \infty$, so by definition there exists an $N_{1} \in \mathbb{N}$ such that

$$
\left|x_{n}-a\right|<\epsilon \text { whenever } n \geq N_{1}
$$

By a similar argument there exists an $N_{2} \in \mathbb{N}$ such that

$$
\left|y_{n}-a\right|<\epsilon \text { whenever } n \geq N_{2}
$$

Finally, by hypothesis

$$
x_{n} \leq w_{n} \leq y_{n} \quad \text { whenever } n \geq N_{0}
$$

Choose N to be the largest of N_{0}, N_{1}, N_{2}. Then when $n \geq N$,

$$
\left|x_{n}-a\right|<\epsilon \quad \Rightarrow \quad-\epsilon<x_{n}-a<\epsilon \quad \Rightarrow \quad a-\epsilon<x_{n}
$$

Also

$$
\left|y_{n}-a\right|<\epsilon \quad \Rightarrow \quad-\epsilon<y_{n}-a<\epsilon \quad \Rightarrow \quad y_{n}<a+\epsilon
$$

So, combining inequalities, we have

$$
a-\epsilon<x_{n} \leq w_{n} \leq y_{n}<a+\epsilon
$$

which implies that

$$
a-\epsilon<w_{n}<a+\epsilon
$$

or

$$
-\epsilon<w_{n}-a<\epsilon \quad \Rightarrow \quad\left|w_{n}-a\right|<\epsilon
$$

1.3. Theorem 2.9 ii).

Theorem (Squeeze Theorem Part ii)). If $x_{n} \rightarrow 0$ as $n \rightarrow \infty$ and $\left\{y_{n}\right\}$ is bounded, then

$$
x_{n} y_{n} \rightarrow 0 \quad \text { as } \quad n \rightarrow \infty
$$

Proof. Let $\epsilon>0$ be given. By hypothesis, $\left\{y_{n}\right\}$ is bounded, so by definition there exists an $M>0$ such that

$$
\left|y_{n}\right| \leq M \quad \forall n \in \mathbb{N}
$$

Also by hypothesis, $x_{n} \rightarrow 0$ as $n \rightarrow \infty$, so there exists an $N \in \mathbb{N}$ such that

$$
\left|x_{n}-0\right|=\left|x_{n}\right|<\frac{\epsilon}{M} \quad \text { whenever } n \geq N
$$

Then when $n \geq N$, we have

$$
\left|x_{n}\right|\left|y_{n}\right|=\left|x_{n} y_{n}\right|=\left|x_{n} y_{n}-0\right|<M \cdot \frac{\epsilon}{M}=\epsilon
$$

Since ϵ was an arbitrary choice, we can find such an N for any $\epsilon>0$, so by definition

$$
x_{n} y_{n} \rightarrow 0 \quad \text { as } \quad n \rightarrow \infty
$$

