
1. Introduction

Definition (sequence). A sequence is a function {xn} : N → R whose

domain is N. The range of the sequence is the set {xn : n ∈ N}.

We denote a sequence by

{xn} or {xn}
∞

n=0 or {xn}n∈N

or possibly by a list of elements

x1, x2, x3, . . .

Definition (convergent sequence). A sequence {xn} is said to con-

verge to a ∈ R if, for every ǫ > 0, there exists an N ∈ N such that

|xn − a| < ǫ whenever n ≥ N

Example. Prove that 1/n → 0 as n → ∞.

Proof. Let ǫ > 0 be given. By the Archimedean principle (with a = 1),
there is an N ∈ N such that
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ǫ
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Note that if xn → a as n → ∞, by definition for any given ǫ > 0,
there is an index N ∈ N with the property that all terms of the sequence
beyond N are within ǫ of a.

Definition (bounded above). A sequence is said to be bounded above

if its range is bounded above.

Definition (bounded below). A sequence is said to be bounded above

if its range is bounded below.

Definition (bounded). A sequence is said to be bounded if it is bounded

above and below.

Theorem. The limit of a convergent sequence is unique.
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To prove this theorem, we will assume that a sequence converges to
two limits, a and b, and show that |a − b| is less than any preassigned
ǫ > 0, which by Theorem 1.9 iii), implies that |a − b| = 0. This is a
type of proof known as an ǫ/2 proof because to make the sum of two
quantities less than ǫ, we make each of them less than ǫ/2.

Proof. Let ǫ > 0 be given. By hypothesis {xn} converges to two limits,
a and b. Since xn → a as n → ∞, by definition there exists an N1 ∈ N

such that
|xn − a| <

ǫ

2
whenever n ≥ N1

Also xn → b as n → ∞, so by definition there exists an N2 ∈ N such
that

|xn − b| <
ǫ

2
whenever n ≥ N2

Let N be the larger of N1 and N2. Then for n ≥ N ,

|a − b| = |a − xn + xn − b| = |(a − xn) + (xn − b)|

By the triangle inequality, we can write

|(a − xn) + (xn − b)| ≤ |a − xn| + |xn − b| <
ǫ

2
+

ǫ

2
= ǫ

Since ǫ was arbitrary, |a− b| can be made smaller than any preassigned
ǫ > 0 by taking N sufficiently large, so by Theorem 1.9 iii), |a − b| =
0. �

Theorem. Every convergent subsequence is bounded.

Proof. By hypothesis, xn → a as n → ∞. Choose ǫ = 1. Then by
definition there exists an n ∈ N such that

whenever n ≥ N, |xn−a| < 1 ⇒ −1 < xn−a < 1 ⇒ a−1 < xn < a+1

Now consider xn for n < N . This is a finite set, so let M be the largest
absolute value among elements of this set:

M = max{|x1|, |x2|, . . . , |xn−1|}

Then for 1 ≤ n ≤ N − 1,

−M ≤ xn ≤ M

Now let m1 be the smaller of −M and a − 1, and let m2 be the larger
of M and a + 1. Then for all n ∈ N,

m1 ≤ xn ≤ m2

so {xn} is bounded. �
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Theorem. Every subsequence of a convergent sequence is convergent,

and the limit is the same as the original sequence.

Proof. Let {xn} be a convergent sequence xn → a as n → ∞, and let

{xnk
}k∈N with n1 < n2 < n3 < · · ·

Let ǫ > 0 be given, so there exists an N ∈ N such that

|xn − a| < ǫ whenever n ≥ N

Note that nk > k since n1 ≥ 1, and if nk ≥ k, then nk+1 ≥ nk+1 ≥ k+1,
so nk > k for all k ∈ N, which means that when n ≥ N , nk > n, and
therefore |xn − a| < ǫ. This establishes that xnk

→ a as k → ∞. �


