1. INTRODUCTION

Definition (sequence). A sequence is a function $\{x_n\} : \mathbb{N} \to \mathbb{R}$ whose domain is \mathbb{N} . The range of the sequence is the set $\{x_n : n \in \mathbb{N}\}$.

We denote a sequence by

 $\{x_n\}$ or $\{x_n\}_{n=0}^{\infty}$ or $\{x_n\}_{n\in\mathbb{N}}$

or possibly by a list of elements

$$x_1, x_2, x_3, \ldots$$

Definition (convergent sequence). A sequence $\{x_n\}$ is said to **converge** to $a \in \mathbb{R}$ if, for every $\epsilon > 0$, there exists an $N \in \mathbb{N}$ such that

$$|x_n - a| < \epsilon \quad whenever \quad n \ge N$$

Example. Prove that $1/n \to 0$ as $n \to \infty$.

Proof. Let $\epsilon > 0$ be given. By the Archimedean principle (with a = 1), there is an $N \in \mathbb{N}$ such that

$$N > \frac{1}{\epsilon}$$
 so that $\frac{1}{N} < \epsilon$

Then for $n \geq N$,

$$\frac{1}{n} = \frac{1}{n} - 0 = \left|\frac{1}{n} - 0\right| < \epsilon$$

		_	

Note that if $x_n \to a$ as $n \to \infty$, by definition for any given $\epsilon > 0$, there is an index $N \in \mathbb{N}$ with the property that all terms of the sequence beyond N are within ϵ of a.

Definition (bounded above). A sequence is said to be **bounded above** if its range is bounded above.

Definition (bounded below). A sequence is said to be **bounded above** if its range is bounded below.

Definition (bounded). A sequence is said to be **bounded** if it is bounded above and below.

Theorem. The limit of a convergent sequence is unique.

To prove this theorem, we will assume that a sequence converges to two limits, a and b, and show that |a - b| is less than any preassigned $\epsilon > 0$, which by Theorem 1.9 iii), implies that |a - b| = 0. This is a type of proof known as an $\epsilon/2$ proof because to make the sum of two quantities less than ϵ , we make each of them less than $\epsilon/2$.

Proof. Let $\epsilon > 0$ be given. By hypothesis $\{x_n\}$ converges to two limits, a and b. Since $x_n \to a$ as $n \to \infty$, by definition there exists an $N_1 \in \mathbb{N}$ such that

$$|x_n - a| < \frac{\epsilon}{2}$$
 whenever $n \ge N_1$

Also $x_n \to b$ as $n \to \infty$, so by definition there exists an $N_2 \in \mathbb{N}$ such that

$$|x_n - b| < \frac{\epsilon}{2}$$
 whenever $n \ge N_2$

Let N be the larger of N_1 and N_2 . Then for $n \ge N$,

$$|a - b| = |a - x_n + x_n - b| = |(a - x_n) + (x_n - b)|$$

By the triangle inequality, we can write

$$|(a - x_n) + (x_n - b)| \le |a - x_n| + |x_n - b| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$$

Since ϵ was arbitrary, |a - b| can be made smaller than any preassigned $\epsilon > 0$ by taking N sufficiently large, so by Theorem 1.9 iii), |a - b| = 0.

Theorem. Every convergent subsequence is bounded.

Proof. By hypothesis, $x_n \to a$ as $n \to \infty$. Choose $\epsilon = 1$. Then by definition there exists an $n \in \mathbb{N}$ such that

whenever $n \ge N$, $|x_n - a| < 1 \Rightarrow -1 < x_n - a < 1 \Rightarrow a - 1 < x_n < a + 1$

Now consider x_n for n < N. This is a finite set, so let M be the largest absolute value among elements of this set:

$$M = \max\{|x_1|, |x_2|, \dots, |x_{n-1}|\}\$$

Then for $1 \le n \le N - 1$,

$$-M \le x_n \le M$$

Now let m_1 be the smaller of -M and a-1, and let m_2 be the larger of M and a+1. Then for all $n \in \mathbb{N}$,

$$m_1 \le x_n \le m_2$$

so $\{x_n\}$ is bounded.

Theorem. Every subsequence of a convergent sequence is convergent, and the limit is the same as the original sequence.

Proof. Let $\{x_n\}$ be a convergent sequence $x_n \to a$ as $n \to \infty$, and let $\{x_{n_k}\}_{k \in \mathbb{N}}$ with $n_1 < n_2 < n_3 < \cdots$

Let $\epsilon > 0$ be given, so there exists an $N \in \mathbb{N}$ such that

 $|x_n - a| < \epsilon$ whenever $n \ge N$

Note that $n_k > k$ since $n_1 \ge 1$, and if $n_k \ge k$, then $n_{k+1} \ge n_k + 1 \ge k + 1$, so $n_k > k$ for all $k \in \mathbb{N}$, which means that when $n \ge N$, $n_k > n$, and therefore $|x_n - a| < \epsilon$. This establishes that $x_{n_k} \to a$ as $k \to \infty$. \Box